Synthetic and Mechanistic Studies on the Azabicyclo[7.3.1]enediyne Core and Naphtho[2,3-h]quinoline Portions of Dynemicin A

Philip Magnus,* Shane A. Eisenbeis, Robin A. Fairhurst, Theodore Iliadis, Nicholas A. Magnus, and David Parry
Contribution from the Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

Received February 10, 1997^{*}

Abstract

The synthesis of the 13-keto-10-azabicyclo[7.3.1]enediyne core structure of dynemicin A has been achieved by two routes, Schemes 4 and 6 . The chemistry of the 13 -keto core structure is dominated by the unusually facile bridgehead enolization. Comparison of the rates of cycloaromatization of a variety of enediynes revealed that substantial rate differences occurred even though the distance between the bonding acetylenes was virtually identical. A non-radical cycloaromatization pathway, initiated by thiol addition to the enediyne system, was discovered, and the simple core amine 26 exhibits modest in vitro and in vivo antitumor activity. Finally, two methods for the synthesis of the naphtho[2,3-h]quinoline portion of dynemicin A are described, and both these compounds also exhibit antitumor activity.

Introduction

The isolation and structural elucidation of dynemicin A 1 (R $=\mathrm{H}$) was reported in 1989. ${ }^{1}$ It was the first enediyne antitumor agent whose structure $1(\mathrm{R}=\mathrm{Ac})$ was confirmed by X-ray crystallography, Scheme 1.2,3 The source of $\mathbf{1}$ was the fermentation broth of a new Micromonospora strain, isolated from a soil sample collected in Gujarat State, India, and identified as Micromonospora chersina sp. nov. no. M956-1. Dynemicin A was found to exhibit strong growth inhibition of Gram-positive bacteria, especially of recombination-deficient mutants such as Bacilus subtillis M45 strain. Most importantly, both dynemicin A and its triacetate show potent in vivo antitumor activity. Dynemicin A is a member of the family of antitumor antibiotics commonly known as the enediyne natural products; ${ }^{4}$ this group includes the calicheamicins, esperamicins, ${ }^{5}$ neocarzinostatin, ${ }^{6}$ kedarcidin, ${ }^{7} \mathrm{C}-1027,{ }^{8}$ and maduropeptin. ${ }^{9}$

[^0]In 1990, Semmelhack ${ }^{10}$ speculated that dynemicin A undergoes bioreductive activation with concomitant epoxide ring opening to give the extended quinone methide 1a. Hydration and oxidation of $\mathbf{1 a}$ followed by Bergman cycloaromatization of the diol $\mathbf{1 b}$ lead to the diyl $\mathbf{1 c}$ which can hydrogen abstract to provide the adduct 1d. ${ }^{11}$ Consequently if dynemicin A or one of the subsequent adducts is bound to DNA, ${ }^{12}$ the diyl is fully capable of backbone scission, Scheme 2. Generally, it is thought that, prior to bioreduction, dynemicin forms an intercalation complex with the DNA. A model for this complex has been constructed (using energy minimization and molecular dynamics techniques), and appeared to be consistent with the available experimental data. ${ }^{4}$

Studies to design models that mimic dynemicin A have been based upon this working hypothesis. ${ }^{13}$ It has been generally assumed that the formation of a diradical intermediate is a prerequisite for biological activity. The diradical (p-benzyne) intermediates in simple prototype enediynes were proposed by Bergman in 1972. ${ }^{14}$ There have been many reports of different strategies for the synthesis of the core structure of dynemicin A, ${ }^{15}$ and recently the Myers ${ }^{16}$ and Danishefsky ${ }^{17}$ groups have completed its total synthesis.

[^1]
Scheme 1

1, drawn to show its relationship to calicheamicinone.

2, Calicheamicinone

Scheme 2

$1 \mathbf{1 a}$

1d

Retrosynthetic Analysis ($\mathbf{X}=\mathbf{H}$ or OR)

In Scheme 1 dynemicin A is drawn in two ways. The first emphasizes the enediyne (F-ring), and is a particularly good representation for illustrating the diradical mechanism, Scheme 2. The second drawing more readily shows the bicyclo[7.3.1]enediyne core in relation to calicheamicinone (2). A third way of drawing dynemicin A is shown in Scheme 3 that lends itself to providing a clear picture of our retrosynthetic analysis. The enediyne bisects the two fused six-membered rings, providing a pseudo-axis of symmetry. While this may seem to be a mute point, the structural relationships between compounds and the subsequent analysis of possible pathways for their synthesis can frequently be strongly influenced by how the compounds are drawn.

As an extension of our research on esperamicin and calicheamicin, ${ }^{18}$ we have applied the key $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-propargyl cation cyclization strategy for the synthesis of cyclic tenmembered ring enediynes to the synthesis of the azabicyclo[7.3.1] enediyne core structure 3, Scheme $3 .{ }^{19}$

We considered that the core structure $\mathbf{3}$ should be a stable molecule with respect to cycloaromatization at ambient temperatures, and could be derived from 4, which in turn should be available from a cobalt-mediated cyclization of 5 . The

[^2]enediyne section can be constructed from a 3-(silyloxy)quinolinium intermediate, 7 , leading directly to 6 .

Synthesis of the Azabicyclo[7.3.1]enediyne Core

The protected enediyne 9 was prepared using two consecutive palladium(0)-catalyzed acetylenic coupling reactions. Coupling

[^3]
Scheme 3

Scheme 4^{a}

${ }^{a}$ Conditions: (a) $\mathrm{HCCCH}_{2} \mathrm{OTHP} / \mathrm{THF} / n-\mathrm{BuNH}_{2} / \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}(2.5 \mathrm{~mol} \%) / \mathrm{CuI}(5 \mathrm{~mol} \%), \mathbf{8}(72 \%) \text {. (b) } \mathrm{HCCSiMe}_{3} / \mathrm{THF} / n-\mathrm{BuNH}}^{2} / \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.5$ $\mathrm{mol} \%) / \mathrm{CuI}(5 \mathrm{~mol} \%), 9(90 \%)$. (c) $\mathrm{TBAF} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}, 10(100 \%)$. (d) $\mathbf{1 0} / \mathrm{EtMgBr} / \mathrm{THF}$, followed by 11 or 12 and $\mathrm{AdOCOCl}, 13(64 \%), 14(75 \%)$. (e) $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}, \mathbf{1 5}(87 \%)$, pyridinium tosylate $/ \mathrm{EtOH}, \mathbf{1 6}$ (86%). (f) $\mathrm{Co}_{2}(\mathrm{CO})_{8} / \mathrm{EtOAc}, \mathbf{1 7}(60 \%), \mathrm{Co}_{2}(\mathrm{CO})_{8} / \mathrm{THF}, \mathbf{1 8}(59 \%)$ and $\mathbf{2 0}(33 \%)$. (g) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6} /$ acetone/2,6-di-tert-butyl-4-methylpyridine, 16 (76%). (h) $\mathrm{Tf}_{2} \mathrm{O} / 2$-nitropropane/2,6-di-tert-butyl-4-methylpyridine at -10 ${ }^{\circ} \mathrm{C}$ for 15 min , followed by $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6} /$ acetone, $23(55 \%), 24(53 \%)$. (i) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2 5}(81 \%), \mathbf{2 6}$ (78\%).
of propargyl O-THP ether, with cis-1,2-dichloroethylene gave 8 (72%), Scheme $4 .{ }^{20}$ (Trimethylsilyl)acetylene was coupled to 8 to give the enediyne tetrahydropyranyl ether 9 (90%). Treatment of 9 with tetrabutylammonium fluoride (or, alternatively, lithium hydroxide in aqueous THF) gave the terminal acetylene $\mathbf{1 0}$ in quantitative yield. This sequence provides large

[^4]quantities of $\mathbf{1 0}(70 \mathrm{~g})$, which was used immediately since it is difficult to store without extensive decomposition.

Initially, we used 3-hydroxyquinoline to test the viability of the strategy, and we also experimented with several chloroformates to convert $\mathbf{1 0}$ and $\mathbf{1 1}$ into 13. Eventually, it was found that the most suitable carbamate derivative that could be readily removed to provide access to the unprotected aniline derivatives was the adamantyl carbamate adduct, Scheme $4 .{ }^{21}$ Treatment of $\mathbf{1 1}{ }^{22}$ with the magnesioacetylide salt of $\mathbf{1 0}$ in the presence of

[^5]adamantyl chloroformate ($\mathrm{Ad}=$ adamantyl) gave, in a completely regiospecific reaction, ${ }^{23}$ the dihydroquinoline $\mathbf{1 3}$ (64\%). Selective deprotection of the THP ether 13 to give 15 (87\%) was accomplished using $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$.

Complexation of 15 with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ gave 17 (60\%) along with some complexation at the other acetylene 19 (ca. 15\%) and small amounts $(<5 \%)$ of biscomplexation. In this series the minor regioisomer was not recycled. When the alcohol 17 was exposed to triflic anhydride/2,6-di-tert-butyl-4-methylpyridine (DBMP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}$, a rapid transformation took place to give a symmetrical ether $(69 \%) .{ }^{24}$ None of the desired adduct 21 could be detected. We reasoned that the alcohol 17 could be intermolecularly hydrogen bonded, and as a consequence ionization of the hydroxyl group to the $\eta^{2}-\mathrm{Co}_{2}(\mathrm{CO})_{6}$-propargylic cation takes place when it is solvated by un-ionized molecules of $\mathbf{1 7}\left(\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right){ }^{25}$ This solvate collapses to the ether faster than intramolecular enol ether trapping to give 21. This simple notion predicts that a cation-solvating solvent might stabilize the $\eta^{2}-\mathrm{Co}_{2}(\mathrm{CO})_{6}$-propargylic cation long enough to be trapped by the TBS enol ether. Treatment of $\mathbf{1 7}$ with triflic anhydride/ DBMP in $(\mathrm{Me})_{2} \mathrm{CHNO}_{2}(\epsilon 35.9) / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\epsilon 8.9)(1: 2)$ at -10 ${ }^{\circ} \mathrm{C}$ gave the cyclized product 21, and none of the ether. The cobalt-complexed cyclization product 21 was quite unstable and could not be readily purified without extensive decomposition, and therefore it was immediately oxidatively decomplexed using ceric ammonium nitrate (CAN) to give 23 (55% from 17). Treatment of the newly generated enediyne core 23 with trifluoroacetic acid in dichloromethane cleanly generated the sec-amine 25 (81%).

The next stage required the synthesis of 3-hydroxy-6methoxyquinoline ($\mathbf{1 2 d}$), which despite its apparent simplicity proved to be a tedious compound to synthesize, especially on a large scale. The classical sequence shown in Scheme 5 proved to be the most practical. ${ }^{26}$
O-Sodionitromalonodialdehyde (27) (made by treatment of

[^6]
(25) For general discussions of the effects of solvent polarity on reaction rates see: Solvents and Solvent Effects in Organic Chemistry; Reichardt, C., Ed.; VCH: Weinheim, Germany, 1988. Kinetics and Mechanism. A Study of Homogeneous Chemical Reactions; Frost, A. A., Pearson, R. G., Eds.; Wiley: New York, 1963. Mechanism in Organic Chemistry; Alder, R. W., Baker, R., Brown, J. M., Eds.; Wiley: New York, 1975.
(26) Weissberg, A.; Taylor, E. C. The Chemistry of Heterocyclic Compounds. Quinoline. Parts I-III; Jones, G., Ed.; Interscience Publications, John Wiley \& Sons: London, 1977; Vol. 32. Van der Plas, H. C.; Yamaguchi, T. Recl. Trav. Chim. Pays-Bas. 1977, 96, 89. Cho, I.; Gong, L.; Muchowski, J. M. J. Org. Chem. 1991, 56, 7288. Stanetty, P.; Koller, H.; Mihovilovic, M. J. Org. Chem. 1992, 57, 6833. Arnold, Z. Collect. Czech. Chem. Commun. 1973, 38, 1168. Lloyd, D.; McNab, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 459.

Scheme $\mathbf{5}^{a}$

12a

${ }^{a}$ Conditions: (a) $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{Cl} / \mathrm{AcOH} / \mathrm{PhSH}$ (catalytic), reflux, 12b (48%). (b) $\mathrm{SnCl}_{2} / \mathrm{HCl}, \mathbf{1 2 c}(86 \%)$. (c) $\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}, \mathbf{1 2 d}$ (95\%). (d) t - $\mathrm{BuMe}_{2} \mathrm{SiCl} / \mathrm{DMF}$, 12e (91\%).
mucobromic acid with NaOH$)^{27}$ was condensed with p-anisidine to give the vinylogous enamide 12a. Treatment of 12a with p-anisidine hydrochloride/ AcOH in the presence of a catalytic amount of thiophenol gave 12b. The function of thiophenol (it clearly accelerates the reaction) is presumably to equilibrate the E / Z-isomers of $\mathbf{1 2 a}$, thus facilitating cyclization into $\mathbf{1 2 b}$. Reduction, diazotization, and hydrolysis of 12b gave 12d, via 12c. Standard silylation conditions gave $\mathbf{1 2 e}$.

Following the same reaction protocols 12e was converted into 14 and then into $16 .{ }^{28}$ Complexation of 16 with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ in tetrahydrofuran gave 18 (59\%) along with some complexation at the other acetylene $\mathbf{2 0}$ (33%) and traces of biscomplexation. The undesired regioisomer $\mathbf{2 0}$ was recycled by ceric ammonium nitrate oxidation to give $\mathbf{1 6} \mathbf{(7 6 \%)}$). All attempts to make this complexation more selective did not improve the above ratio (1.8:1). The uncomplexed propargyl alcohol 16, and the η^{2} $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ isomer 20 do not cyclize to the dynemicin core structure using the conditions described below.

Treatment of the cobalt adduct $\mathbf{1 8}$ with triflic anhydride/ DBMP in $(\mathrm{Me})_{2} \mathrm{CHNO}_{2}$ at $-10^{\circ} \mathrm{C}$ for 30 min gave 22. Direct oxidative workup by ceric ammonium nitrate oxidation gave the cyclized enediyne 24 (53%, for the two steps). The structure of $\mathbf{2 4}$ was confirmed by X-ray crystallography. ${ }^{29}$ The adamantyl carbamate was removed by treatment of $\mathbf{2 4}$ with trifluoroacetic acid in dichloromethane to give the amine 26 (78%). While the route to the azabicyclo[7.3.1]enediyne core structure 24 is short (five steps from 12, overall 15% yield), the 3-(silyloxy)quinoline $\mathbf{1 2}$ is tedious to make, and lacks flexibility for more substituted systems.

Alternative Synthesis of the Azabicyclo[7.3.1]enediyne Core

Commercially available 6-hydroxyquinoline, was treated with triisopropylsilyl trifluoromethanesulfonate and 2,6-lutidine to give $\mathbf{2 8}$ in $>95 \%$ yield, Scheme 6. Treatment of the quinoline $\mathbf{2 8}$ with the magnesioacetylide salt of $\mathbf{1 0}$ resulted in exclusive 1,2-addition, affording 29. When 29 was treated with MCPBA

[^7]
Scheme $\mathbf{6}^{a}$

${ }^{a}$ Conditions: (a) $10 / E t M g B r / T H F$, followed by 28 and AdOCOCl . (b) $\mathrm{MCPBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NaHCO}_{3}, \mathbf{3 0}$ (100%). (c) $(\mathrm{PhSe}) 2 / \mathrm{EtOH} / \mathrm{NaBH} 4,31$ (64%). (d) t - $\mathrm{BuMe}_{2} \mathrm{SiCl} / \mathrm{DMF} / \mathrm{imidazole}, \mathbf{3 2}$ (95\%). (e) $\mathrm{MCPBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by pyridine, reflux, $\mathbf{3 3}$ (95%). (f) Pyridinium tosylate/EtOH, $\mathbf{3 4}$ (95%). (g) $\mathrm{Co}_{2}(\mathrm{CO})_{8} / \mathrm{EtOAc}, 35(60 \%)$. (h) $\mathrm{Tf}_{2} \mathrm{O} / 2$-nitropropane/2,6-di-tert-butyl-4-methylpyridine at - $10^{\circ} \mathrm{C}$ for 15 min, followed by $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6} /$ acetone, $\mathbf{3 6}$ (55\%). (i) $\mathrm{CsF} / \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, \mathbf{3 7}$ (95\%).
in dichloromethane, a 1:1 mixture of epoxides was formed in low yield, whereas exposure of $\mathbf{2 9}$ to MCPBA in the presence of aqueous sodium bicarbonate gave $\mathbf{3 0}$ as a single stereoisomer, presumably with the stereochemistry as shown. Treatment of diphenyl diselenide with sodium borohydride resulted in a selenyl/borate complex which when added to $\mathbf{3 0}$ generated the anti-adduct 31. ${ }^{30}$ The hydroxyl group was protected as the tertbutyldimethylsilyl ether $\mathbf{3 2}$ under standard conditions, and oxidation with MCPBA generated the selenoxide, which upon warming in the presence of excess pyridine undergoes synelimination to produce the dihydroquinoline 33 ($>95 \%$). This alternative synthesis is efficient, with $\mathbf{3 3}$ being produced in good overall yield (ca. 40%). Conversion of $\mathbf{3 3}$ into $\mathbf{3 6}$ proceeded without complications. Treatment of $\mathbf{3 6}$ with cesium fluoride in wet acetonitrile afforded the desired phenol $\mathbf{3 7}$ in 97% yield. The phenol 37 is only moderately stable at room temperature, and slowly decomposes due to air oxidation.

Bridgehead Enolate Reactivity

Having established a concise route to gram quantities of the core structure, we examined some of the chemistry of 24 . The bridged ketone 24 was readily enolized using $\mathrm{LiN}(\mathrm{TMS})_{2} / \mathrm{THF} /$ $-78^{\circ} \mathrm{C}$, and quenching with PhSeBr gave the bridgehead selenide 38 (93%), Scheme 7. ${ }^{31}$ The X-ray structure of 24 shows that the bridgehead proton is in the plane of the π-orbitals of the carbonyl group, and therefore ideally aligned for enolization. Oxidation of $\mathbf{3 8}$ (MCPBA) gave the selenoxide 39 which was sufficiently stable to be isolated. Heating 39 at $40{ }^{\circ} \mathrm{C}$ resulted in rearrangement to the selenite ester $\mathbf{4 0}$, and eventually the alcohol 41 (68\%). If 39 is heated in the presence of the trimethylsilyl enol ether of acetone, the bridgehead acetonyl compound $\mathbf{4 2}$ is formed. These transformations indicate that the iminoquinomethide 39a is formed from 39, and does not lose a proton to form the α, β-unsaturated ketone

[^8]39b. The formation of the iminoquinomethide intermediate 39a is completely analogous to the chemistry exhibited by dynemicin, and speculated to be an intermediate formed from opening of the epoxide in 1 .

Direct oxidation of the enolate $\mathbf{2 4} \mathbf{a}$ with dibenzoyl peroxide gave the bridgehead benzoate 43. The enolate 24a was readily alkylated; for example, treatment of 24a with chloromethyl methyl ether gave 44 in excellent yield. Quite surprisingly, attempts to form the enol triflate in tetrahydrofuran by treatment with a variety of triflating reagents only resulted in the C-triflate 45 with small amounts of the desired O-triflate $46 .{ }^{32}$ Eventually, it was found that the O-triflate $\mathbf{4 6}$ became the major product if toluene was used as the solvent, but the yield is a modest 33%. While 46 underwent $\mathrm{Pd}^{\mathrm{II}}$-catalyzed carboxymethylation to give 47, ${ }^{33}$ which potentially allows access to the E-ring of dynemicin, the low yields did not make it practical for further investigation.

Rates of Cycloaromatization

We have found that, for a series of enediynes where the bonding distance between the acetylenes $(r, 3,8)$ is virtually identical, their relative rates of cycloaromatization are dramatically different, Scheme $8 .{ }^{34}$ Measuring the rate of cycloaromatization of 24 ($r=3.4 \AA$, X-ray) to give 48 (68\%) in 3,6dihydrotoluene from 65 to $114{ }^{\circ} \mathrm{C}$ gave the thermodynamic parameters. The data were extrapolated to $37{ }^{\circ} \mathrm{C}$ (Table 1), and clearly show that 24 is very stable under physiological conditions. There is a modest solvent effect on the rate of cyclization of 24 to $\mathbf{4 8}, t_{1 / 2}\left(\right.$ cyclohexadiene, $\left.81^{\circ} \mathrm{C}\right)=10.9 \mathrm{~h}$ versus $t_{1 / 2}\left(3,6\right.$-dihydrotoluene, $\left.81^{\circ} \mathrm{C}\right)=35.0 \mathrm{~h}$ and $t_{1 / 2}(\mathrm{THF}$, $\left.67^{\circ} \mathrm{C}\right)=114.9 \mathrm{~h}$ versus $t_{1 / 2}\left(3,6\right.$-dihydrotoluene, $\left.67^{\circ} \mathrm{C}\right)=167.4$ h. ${ }^{35}$

The bridgehead alkylated adduct 44 undergoes cycloaromatization to give 50 ($>95 \%$), in an exceptionally clean reaction

[^9]Scheme 7^{a}

${ }^{a}$ Conditions: (a) $\mathrm{Li}(\mathrm{TMS})_{2} / \mathrm{THF} /-78{ }^{\circ} \mathrm{C}$. (b) $\mathrm{PhSeBr}, 38$ (93\%). (c) MCPBA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /-78{ }^{\circ} \mathrm{C}$. (d) 1-[(Trimethylsilyl)oxy]-1-methylethylene followed by TMSOTf, 41 (22\%) and 42 (51%), dimethyldioxirane/acetone, 41 (68%). (e) (PhCO$)_{2} \mathrm{O}_{2}, 43(55 \%), \mathrm{ClCH}_{2} \mathrm{OMe}, 44(81 \%)$. (f) $\mathrm{LiN}(\mathrm{TMS})_{2} /$ $\mathrm{PhMe} / \mathrm{Tf}_{2} \mathrm{O} /-78^{\circ} \mathrm{C}, 45$ (10\%) and 46 (33\%). (g) $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{DMF}^{\circ} / \mathrm{PPh}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CO}$ at $25^{\circ} \mathrm{C}, 47$ (55\%).

Scheme $\mathbf{8}^{a}$

${ }^{a}$ Conditions: (a) $\mathrm{NaBH}_{4} / \mathrm{THF} / \mathrm{MeOH}, 52$ (43\%). (b) $n-\mathrm{BuLi} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CN} / \mathrm{THF}, 53$ (85\%).
compared to 24 . The thermodynamic parameters are very similar to those of $\mathbf{2 4}$, and indicate that it is more resistant to cycloaromatization even though the distance between the two bonding acetylene carbon atoms (r) must be virtually the same.

The amine 26 was heated in THF at temperatures from 51 to $67^{\circ} \mathrm{C}$ to give 49 (72%). The most notable feature is that the rate of cycloaromatization of $\mathbf{2 6}$ increases more rapidly with
increasing temperature than that of the carbamates 24 and 44. At $37{ }^{\circ} \mathrm{C} 26$ cycloaromatizes 1.6 times faster than 24, and at $65^{\circ} \mathrm{C}$ the difference increases to 20 times ($\Delta G^{\ddagger}=29$ and 28.1, respectively). The origin of this difference lies in the $T \Delta S^{\ddagger}$ term. ${ }^{36}$

The remarkable change in entropy $\left(\mathbf{2 6}, \Delta S^{\ddagger}=+28.3\right.$ $\left.\mathrm{cal} \cdot \mathrm{mol}^{-1}, \mathbf{2 4}, \Delta S^{\ddagger}=-9.3 \mathrm{cal} \cdot \mathrm{mol}^{-1}\right)$ appears to be caused by

Table 1.

substrate	$\Delta G^{\ddagger}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$	$\Delta H^{\ddagger}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$	$\Delta S^{\ddagger}\left({\left.\mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)}_{E_{\mathrm{a}}\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)}^{\mathrm{rate}\left(\mathrm{s}^{-1}\right)\left(37{ }^{\circ} \mathrm{C}\right)}\right.$		
24	29.0	26.1	-9.3	26.8	2.48×10^{-8}
26	28.1	36.9	28.3	37.6	324 d
53	25.1	21.7	-10.9	22.2	196 d
44	30.2	26.1	-9.3	33.0	10^{-8}

Scheme $\mathbf{9}^{a}$

${ }^{a}$ Conditions: (a) Heating in 2,5-dihydrotoluene (air leakage). (b) $\mathrm{MCPBA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{5 5}$ (59\%), $\mathbf{5 6}$ (82\%). (c) Heating in 2,5-dihydrotoluene at $140{ }^{\circ} \mathrm{C}, 57$ (15\%).
hydrogen bonding. Both the NH and $\mathrm{C}=\mathrm{O}$ infrared bands of 26 change as a function of concentration, indicating intermolecular hydrogen bonding. Variable concentration ${ }^{1} \mathrm{H}$ NMR also confirmed this phenomenon. The degree of intermolecular hydrogen bonding (aggregation) is a function of temperature, and therefore causes the entropy of activation to increase and become positive (dissociation).

The ketone 24 reacted with $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CN} / n-\mathrm{BuLi}$ to give 53 (85%) as a single stereoisomer. While the distance (r) between the bonding acetylenic carbon atoms in 24 and 53 is virtually the same, and the hybridization at the bridging carbon atom is trigonal in both compounds, $\mathbf{5 3}$ cycloaromatizes to give 54 (X-ray) 500 times faster than 24 at $37^{\circ} \mathrm{C}$! An even more dramatic change in rate occurs when the bridging trigonal carbon atom is made tetrahedral. Reduction of 24 with sodium borohydride in methanol at $25^{\circ} \mathrm{C}$ gave directly the cycloaromatized alcohol 52 (43\%). We could not detect the intermediate enediyne 51. Using a conservative estimate, the alcohol 51 cycloaromatizes 10^{6} times faster than 24 at $37^{\circ} \mathrm{C}$!

While the above cycloaromatization rate studies were conducted with the exclusion of air, for the slower reactions, for example, 24 to $\mathbf{4 8}$ at $65^{\circ} \mathrm{C}$, it was found that a new product slowly accumulated as air leaked into the reaction. The new compound turned out to be the cycloaromatized lactone 55, and an authentic sample was made by treating 48 with m-chloroperoxybenzoic acid, Scheme 9. Surprisingly, when 24 was exposed to m-chloroperoxybenzoic acid, the amide-acetal 56 (82%) was the only isolable product. ${ }^{37}$ Even if less than 1 equiv of oxidant was used, 56 and 24 were the only materials present. Apparently, the further Baeyer-Villiger oxidation of the presumed intermediate $\mathbf{2 4 b}$ (in the open iminium ion form) is

[^10]faster than 24! When 56 was heated at $140^{\circ} \mathrm{C}$, it extruded carbon dioxide, cycloaromatized, and eliminated water to give the indole derivative 57 (15%).

Quantitative investigations indicate that the overall change in strain energy from enediyne to cycloaromatized adduct provides the closure driving force. We have presented computational evidence that factors controlling the ease of cycloaromatization are directly related to strain energy in the transition state rather than to proximity of the acetylenic carbon atoms (r) in the ground state. ${ }^{38}$ The experimental data reported above support the strain hypothesis, but the relative rates are not predicted by computational methods that worked in the esperamicin/calicheamicin core compound(s). ${ }^{39}$ It therefore appears that the small changes in ΔG^{\ddagger}, which are manifested in substantial rate differences, are difficult to match by computational methods.

Non-Radical Cycloaromatization Pathway for the Azabicyclo[7.3.1]enediyne Core Structure Initiated by Thiolate Addition

It has been assumed that the formation of a diradical intermediate is a prerequisite for biological activity. ${ }^{4}$ The simple azabicyclo[7.3.1]enediyne dynemicin core analogue 23 undergoes cycloaromatization via a polar non-radical pathway, and exhibits both in vitro and in vivo antitumor activity. ${ }^{40}$

Treatment of $\mathbf{2 3}$ with sodium 3,5-dimethylthiophenolate/THF at $0^{\circ} \mathrm{C}$ gave a mixture of two compounds, 58 (ca. 1:1), which

[^11]
Scheme 10 ${ }^{a}$

${ }^{a}$ Conditions: (a) 3,5-Dimethylthiophenol/NaH/THF/0 ${ }^{\circ} \mathrm{C}, \mathbf{5 8}$ (73\%). (b) TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{5 9}$ (25\%). (c) $\mathrm{NaH} / \mathrm{THF} / 25^{\circ} \mathrm{C}, \mathbf{6 0}$ (72\%). (d) NaH/THF/ MeOD.

Scheme 11

upon deprotection (TFA) gave a single completely aromatized adduct, 59 (structure by X-ray), Scheme 10. Conducting the above reaction in THF- d_{8} did not result in any deuterium incorporation into $\mathbf{5 8}$ or $\mathbf{5 9}$, thus precluding a radical intermediate in the conversion of $\mathbf{2 3}$ into $\mathbf{5 8}$. Treatment of $\mathbf{2 3}$ with sodium 3,5-dimethylthiophenolate/THF/excess NaH at $0^{\circ} \mathrm{C}$ gave the naphthol $\mathbf{6 0}(72 \%)$. Carrying out the same transformation in the presence of MeOD gave 23a with the incorporation of two deuterium atoms in the positions shown. Excess NaH converted 58 into $\mathbf{6 0}(72 \%)$. Irradiation of $\mathbf{2 3}$ in the presence of $\mathrm{PhSSPh} /$ benzene resulted in slow decomposition to an intractable mixture.

A plausible mechanistic explanation for this unprecedented reaction involves thiolate addition to the enediyne 23 to give the cumulene 23b, which can undergo further thiolate addition resulting in the enolate 23c. Enolate anion ring closure to 23d followed by protonation and tautomerism results in 58, which gives 60. It should be noted that $\mathbf{2 3}$ does not undergo the normal Bergman cycloaromatization to give $\mathbf{2 3 e}$ at an appreciable rate until it is heated to at least $97^{\circ} \mathrm{C}\left(t_{1 / 2}=8.26 \mathrm{~h}\right)$. The mechanism shown in Scheme 11 is consistent with the MeOD experiment, and it is probable that the deuterium para to the -OH was introduced by base-catalyzed exchange after elimination of ArS-.

Myers has shown that neocarzinostatin chromophore undergoes thiol addition to trigger cycloaromatization. The actual cycloaromatization reaction involves a diradical which has been
trapped by THF- $d_{8} .{ }^{41}$ It has been shown by Saito that there is a second pathway available for the cycloaromatization of neocarzinostatin. Under physiological conditions ($\mathrm{D}_{2} \mathrm{O} /$ buffered 2-mercaptoethanol) neocarzinostatin cycloaromatizes with the incorporation of one deuterium atom (80%) in the aromatic ring. ${ }^{42}$ This duality of cycloaromatization mechanisms, diradical and polar, has not been seen in any other enediynes. This study shows that the dynemicin core analogue 23 can undergo cycloaromatization to $23 \mathbf{e}$ via the "normal" thermal $\left(97^{\circ} \mathrm{C}\right)$ diradical cycloaromatization pathway, and in the presence of thiolate $\left(0^{\circ} \mathrm{C}\right)$, a polar cycloaromatization pathway intervenes to give 58/60. ${ }^{43}$

Naphtho[2,3-h]quinoline Portion of Dynemicin

The biological activity of anthraquinones and methods for their synthesis have been the subject of numerous reviews. ${ }^{44} \mathrm{~A}$ number of anthraquinones exhibit in vitro activity versus murine L1210 leukemia cell lines, as well as in vivo activity against P388 leukemia cell lines. ${ }^{45}$ This raises the intriguing possibility

[^12]
Scheme $\mathbf{1 2}^{a}$

65
${ }^{a}$ Conditions: (a) (i) $\mathrm{PPh}_{3} / \mathrm{CBr}_{4}$, (72%). (ii) $\mathrm{LiN}(\mathrm{TMS})_{2} / \mathrm{THF}$ followed by n - BuLi and $\mathrm{ClCO}_{2} \mathrm{Me}$, 62 (95\%). (b) 4,7-Dimethoxyisobenzofuran/ $\mathrm{PhH} /$ reflux for $18 \mathrm{~h}, \mathbf{6 3}\left(100 \%\right.$). (c) $\mathrm{TBSOTf} / 2,6-$ lutidine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 64$ (99.6%). (d) LDA/THF/25 ${ }^{\circ} \mathrm{C}$, followed by $\mathrm{PivCl} / \mathrm{py}, \mathbf{6 5}$ (72%). (e) $\mathrm{Ag}{ }^{\mathrm{II}} \mathrm{O} /$ dioxane $\mathrm{HNO}_{3}, 66$ (72\%). (f) $\mathrm{HBr} / \mathrm{AcOH} /$ reflux followed by $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{py}$, $\mathbf{6 8}$ (68\%).
that the anthraquinone portion of dynemicin could have antitumor activity, rather than simply serving as a DNA intercalating partner. ${ }^{46,47}$

The aldehyde $61{ }^{48}$ was converted into the alkyne $\mathbf{6 2}$ using standard methodology, ${ }^{49}$ and heated with 4,7-dimethoxyisobenzofuran in benzene at reflux to afford the adduct 63 in quantitative yield, Scheme $12 .{ }^{50}$ The bridging ether in $\mathbf{6 3}$ was cleaved with tert-butyldimethylsilyl trifluoromethanesulfonate, affording a 5:1 ratio of (tert-butyldimethylsilyl)oxy-protected phenols 64 (only one regioisomer shown). Treatment of 64 with lithium diisopropylamide in tetrahydrofuran, followed by pivaloyl chloride, gave $\mathbf{6 5} .{ }^{51}$ The mixture of $\mathbf{6 5}$ (and regioisomer) was readily oxidized to the anthraquinone $\mathbf{6 6}$ ($72 \%, \mathrm{Ag}^{\mathrm{II}} \mathrm{O}$, $\mathrm{HNO}_{3} /$ dioxane). ${ }^{52}$ The minor regioisomer was destroyed under these conditions. Deprotection of the anthraquinone 66 proved to be quite difficult; however, warming 66 with 48% aqueous $\mathrm{HBr} / \mathrm{AcOH}$ gave 67. Although the triol 67 could be isolated,

[^13]it was found to be extremely insoluble in the majority of organic solvents, thus making characterization difficult. Acetylation of 67 gave the triacetate 68 (68% from 66). Due to the instability of the triacetate 68 (deacetylation), and the inability to purify the trihydroxyanthraquinone 67, neither were submitted for biological evaluation. However, $\mathbf{6 6}$ showed promising results. The in vitro assays against HCT-116 cell lines provided an IC_{50} value of $500 \mathrm{ng} / \mathrm{mL}$. Comparisons to dynemicin A and its triacetate reveal that $\mathbf{6 6}$ is less active in vitro, with dynemicin A $1(\mathrm{R}=\mathrm{H})$ and its triacetate $\mathbf{1}(\mathrm{R}=\mathrm{Ac})$ having IC_{50} values of 0.28 and $0.18 \mathrm{ng} / \mathrm{mL}$, respectively, in HCT-116 cell lines. ${ }^{43}$

An alternative synthesis of the naphtho[2,3-h]quinoline core structure was examined that avoided the construction of 4,7dimethoxyisobenzofuran, and is regiospecific, Scheme 13.
ortho Lithiation of 2,5-dimethoxybenzyl alcohol using n butyllithium in tetrahydrofuran at reflux, followed by quenching the resulting dianion with carbon dioxide and acidification, gave the lactone 70 (80%). Addition of the lactone 70 to a solution of lithium diisopropylamide in tetrahydrofuran, followed by ethyl 3-(3-methylpyrid-2-yl)propenoate gave the adduct 71 (and stereoisomer) in excellent yield.

Exposure of $\mathbf{7 1}$ to p-toluenesulfonic acid in chloroform at $40^{\circ} \mathrm{C}$ resulted in clean aromatization to give, after pivaloylation, the naphthalene derivative 72. When the derived pivaloyl ester derivative 72 was treated with lithium diisopropylamide in tetrahydrofuran at -70 to $+26^{\circ} \mathrm{C}$, it was converted into 73
(50) 4,7-Dimethoxyisobenzofuran (iv) was made by treatment of ii with the tetrazine iii.

While iv has been reported as an intermediate in various $[2+4]$ cycloaddition reactions, it has not been previously isolated presumably because of its assumed instability. For the synthesis of ii see: Cragg, G. M. L.; Giles, R. G. F.; Roos, G. P. H. J. Chem. Soc. Perkin Trans. 1 1975, 1339. iii: Geldard,J. F.; Lions, F. J. Org. Chem. 1965, 30, 318. Lynch, V. M.; Fairhurst, R.; Magnus, P.; Davis, B. E. Acta Crystallogr., Sect. C 1995, C51, 780-782. Warrener, R. N. J. Org. Chem. 1971, 93, 2346. Priestly, G. M.; Warrener, R. N. Tetrahedron Lett. 1972, 13, 4295. Recently Danishefsky has reported the in situ use of 4,7-dimethoxyisobenzofuran for the synthesis of dynemicin analogs; see: Shair, M. D.; Yoon, T.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 2477.
(51) Brandão, M. A. F.; de Oliveira, A. B.; Snieckus, V. Tetrahedron Lett. 1993, 34, 2437.
(52) Snyder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 227.

Scheme 13 ${ }^{a}$

74
73
72a
${ }^{a}$ Conditions: (a) n - $\mathrm{BuLi} / \mathrm{THF} /$ reflux, followed by $\mathrm{CO}_{2}, \mathbf{7 0}$ (80%). (b) LDA/THF/70, followed by ethyl 3-(3-methylpyrid-2-yl)propenoate/-78 ${ }^{\circ} \mathrm{C}, 71(96 \%)$. (c) p - $\mathrm{TsOH} / \mathrm{CHCl}_{3}$, followed by $\mathrm{PivCl} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMAP}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 72(87 \%)$. (d) $\mathrm{LDA} / \mathrm{THF} /-70$ to $+26{ }^{\circ} \mathrm{C}, 73(95 \%)$. (e) $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{2}\right)_{6} /$ $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 74$ (74\%).
(95%). Presumably, the origin of the ethyl ether 73 is via the intermediate ortho ester 72a, which prefers to eliminate pivaloate anion rather than ethoxide anion, thus providing in situ protection of the newly formed anthracene 73.

Oxidation of $\mathbf{7 3}$ with ceric ammonium nitrate in acetonitrilewater gave the anthraquinone 74 as an orange crystalline solid (74\%). ${ }^{53}$ Tests for cytotoxicity and DNA cleavage were conducted using etoposide (UP-16) as the reference. The inhibitory concentration (IC_{50}) of anthraquinone 74 was $2.8 \times$ $10^{-3} \mathrm{mg} / \mathrm{mL}$, while the reference had an IC_{50} of 1.5×10^{-3} $\mathrm{mg} / \mathrm{mL} .{ }^{43}$

Summary

In all of the $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-acetylene-mediated cyclizations, the blank reaction without the cobalt metallocycle was unsuccessful. This strategy has provided short synthetic routes to the core structures of the other enediyne antitumor agents. ${ }^{54}$ The rate studies clearly show that ring strain and conformational factors control the ease of cycloaromatization. This information should assist the design of non-natural enediynes with potential antitumor activity.

Experimental Section

Unless noted otherwise, all starting materials were obtained from commercial suppliers and were used without further purification. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and tetrahydrofuran (THF) were distilled from sodium/benzophenone under nitrogen prior to use. N, N-Dimethylformamide (DMF), hexane, and benzene were distilled from calcium hydride. Methanol (MeOH) was distilled from magnesium methoxide and stored over $3 \AA$ molecular sieves under argon. Triethylamine was distilled from calcium hydride and stored under argon. All reactions involving organometallic reagents or other moisture sensitive reactants were executed under an atmosphere of dry nitrogen or argon using ovendried and/or flame-dried glassware.

Melting points were determined on a Thomas-Hoover melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a General Electric QE-300 (300 MHz) spectrometer as solutions in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$, unless otherwise indicated. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to $\mathrm{CDCl}_{3}(7.24 \mathrm{ppm})$ as internal standard. Coupling constants are given in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR

[^14]spectra were recorded on General Electric QE-300 (75 MHz) instrument as solutions in CDCl_{3} unless otherwise indicated. Chemical shifts are reported in parts per million (ppm, δ) downfield from TMS and are referenced to the center line of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ as internal standard. IR spectra were recorded either neat on sodium chloride plates or as solutions in solvent as indicated using a Perkin-Elmer 1600 FT-IR spectrometer, and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Low-resolution chemical ionization (CI) mass spectra were obtained on a TSQ 70 instrument, and the exact mass determinations were obtained on a VG Analytical ZAB2-E instrument.

Routine monitoring of reactions was performed using Merck Alufolien Kieselgel $60 \mathrm{~F}_{254}$ silica gel and aluminum-backed TLC plates. Flash chromatography was performed using silica gel Merck Kieselgel $60 \mathrm{H} \mathrm{F}_{254}$ and Florisil 100-200 mesh with the solvent indicated.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydro)-pyranyloxy]hept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]quinoline (13). Ethylmagnesium bromide ($36.0 \mathrm{~mL}, 1 \mathrm{M}, 0.036 \mathrm{~mol}$) was added to a cooled solution of $\mathbf{1 0}(5.7 \mathrm{~g}, 0.030 \mathrm{~mol})$ in tetrahydrofuran (45 mL), and the mixture was stirred for 20 min followed by addition of $11(7.00 \mathrm{~g}, 0.027 \mathrm{~mol})$ in tetrahydrofuran (30 mL). Adamantyl chloroformate ($7.31 \mathrm{~g}, 0.034 \mathrm{~mol}$) was slowly added over a period of 2 h and the mixture stirred for 15 h and poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was chromatographed over silica gel eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give the product $13(10.4 \mathrm{~g}, 64 \%)$ as a pale yellow foam: IR $\left(\mathrm{CDCl}_{3}\right) 2973$, 2956, 2196, 1702, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-$ $7.55(1 \mathrm{H}, \mathrm{m}), 7.09-6.97(3 \mathrm{H}, \mathrm{m}), 5.76-5.68(4 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{bs})$, $4.35-4.19(2 \mathrm{H}, \mathrm{q}), 3.87(1 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{m}), 2.17(9 \mathrm{H}, \mathrm{s}), 1.83-$ $1.52(12 \mathrm{H}, \mathrm{m}), 0.97(9 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,150.1,131.6,129.0,127.7,126.9,125.2,124.9$, $124.8,124.3,119.5,119.3,103.5,96.9,93.1,92.9,82.7,81.9,80.2$, $61.9,54.7,48.9,41.5,36.2,31.0,30.1,25.6,19.1,-4.4,-4.7$; HRMS (CI) calcd for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right) 627.338$, found 627.338.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-hydroxyhept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]quinoline (15). A solution of $\mathbf{1 3}(1.34 \mathrm{~g}, 2.64 \mathrm{mmol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g})$ in ethanol (30 mL) was stirred at $55^{\circ} \mathrm{C}$ for 10 h . The mixture was concentrated in vacuo, dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered. The filtrate was concentrated in vacuo, and the residue chromatographed over silica gel eluting with $40 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give $\mathbf{1 5}(0.98 \mathrm{~g}, 87 \%)$: IR $\left(\mathrm{CHCl}_{3}\right) 3460,2918,1689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.11-6.98(3 \mathrm{H}, \mathrm{m}), 5.78-5.69(3 \mathrm{H}, \mathrm{m}), 4.25(2 \mathrm{H}, \mathrm{s}), 2.61$ $(9 \mathrm{H}, \mathrm{s}), 2.17(6 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 0.27(3 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,131.6,127.7,125.3,124.3,119.9,119.8$, 119.0, 103.5, 95.2, 93.2, 82.6, 82.2, 80.3, 51.4, 48.9, 41.5, 36.1, 30.9,
25.6, 18.2, -4.4, -4.67; HRMS (CI) calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 544.288, found 544.288.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-hydroxy(5,6-$\boldsymbol{\eta}^{2}$-hexacarbonyldicobaltio)hept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]quinoline (17). To a solution of $\mathbf{1 5}(1.0 \mathrm{~g}, 2.36 \mathrm{mmol})$ in EtOAc (50 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{Co}_{2}(\mathrm{CO})_{8}(0.89 \mathrm{~g}, 1.1$ equiv) as a solid. Immediate evolution of gas was observed. The mixture was stirred for 15 min , and concentrated to dryness. The crude product was chromatographed over silica gel (200 times the original weight of starting material) and eluted with $20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane (60% yield): IR $\left(\mathrm{CHCl}_{3}\right) 3215,2863,2605,2030,1963,1685,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}), 7.19-7.02(3 \mathrm{H}, \mathrm{m}), 6.71$ $(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{s}), 5.76(1 \mathrm{H}, \mathrm{s}), 5.63(1 \mathrm{H}, \mathrm{dd}, J=9.2$, $2.3 \mathrm{~Hz}), 4.82-4.60(2 \mathrm{H}, \mathrm{m}), 2.17(9 \mathrm{H}, \mathrm{s}), 1.72(6 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s})$, $0.27(3 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.0-198.8$, $151.9,149.9,138.2,131.4,127.6,125.5,125.1,124.4,124.3,110.0$, $103.6,97.6,95.9,82.3,81.7,81.3,64.1,49.0,41.4,36.1,30.9$, (25.5), 18.1, $-4.4,-4.7$. This compound was used directly in the next step.
$N-[($ Adamantyloxy carbonyl]-15-oxobenzo[10a,14a]bicyclo[7.3.1]-trideca-3,7-diyn-5-ene (23). To a solution of $17(0.913 \mathrm{~g}, 1.10 \mathrm{mmol})$ in 2-nitropropane (39.0 mL) and 2,6-di-tert-butyl-4-methylpyridine (DBMP) $(1.13 \mathrm{~g}, 5.50 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$ was rapidly added triflic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) $(0.56 \mathrm{~mL}, 3.30 \mathrm{mmol})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min followed by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with 2 -nitropropane ($3 \times 10 \mathrm{~mL}$) and dried $\left(\mathrm{MgSO}_{4}\right)$. The extracts were filtered and diluted with acetone (70 mL) and cooled to $-10^{\circ} \mathrm{C}$, followed by the addition of ceric ammonium nitrate (CAN) $(4.82 \mathrm{~g}, 8.80 \mathrm{mmol}$) in three portions (over 5 min). The mixture was stirred for an additional 15 min with rapid evolution of gas occurring. Addition of $\mathrm{NEt}^{t} \mathrm{Pr}_{2}(4.80 \mathrm{~mL}, 27.5 \mathrm{mmol})$ resulted in the formation of a brown precipitate. The mixture was poured onto a column of silica $(50 \mathrm{~g})$ and eluted with $\mathrm{EtOAc}(500 \mathrm{~mL})$. The organic layers were concentrated, and the crude product was chromatographed over silica gel eluting with dichloromethane to give $23(0.25 \mathrm{~g}, 55 \%)$: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 3013, 2917, 2341, 1736, $1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.55(1 \mathrm{H}, \mathrm{d}, J=7.31 \mathrm{~Hz}), 7.29-7.21(3 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{s}), 5.75(1 \mathrm{H}$, d, $J=9.3 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{br}$ s), $3.54-3.50$ $(1 \mathrm{H}, \mathrm{m}), 3.48-3.20(1 \mathrm{H}, \mathrm{dd}, J=14.5,3.0 \mathrm{~Hz}), 2.15(9 \mathrm{H}, \mathrm{s}), 1.66$ $(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.9,151.7,136.1,128.2,127.2$, 126.3, 126.2, 125.8, 125.6, 121.2, 99.3, 91.4, 89.7, 83.3, 82.7, 49.1, 41.4, 36.2, 36.0, 30.9, 21.5; HRMS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$ 411.183, found 411.183.

15-Oxo-10-azabenzo[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5ene (25). To a solution of $23(0.247 \mathrm{~g}, 0.60 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added trifluoroacetic acid ($2.31 \mathrm{~mL}, 30.0 \mathrm{mmol}$), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The mixture was quenched by the addition of solid $\mathrm{NaHCO}_{3}(5.0 \mathrm{~g})$, and extracted with dichloromethane $(3 \times 25 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated in vacuo, and chromatographed over silica gel eluting with dichloromethane to give $\mathbf{2 5}(0.14 \mathrm{~g}, 81 \%)$: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3379,2986$, $2305,1733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.22(1 \mathrm{H}, \mathrm{d}, J$ $=9.7 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.74$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 5.73(2 \mathrm{H}, \mathrm{q}, J=22.4,9.1 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{s}), 4.23$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{t}, J=4.1 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=2.9 \mathrm{~Hz}), 3.39$ $(1 \mathrm{H}, \mathrm{qd}, J=17.7,4.8,1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6$, $142.4,127.9,126.6,125.8,122.3,121.3,120.9,116.5,100.1,92.7$, 90.0, 83.0, 54.0, 53.4, 21.7; HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}\left(\mathrm{M}^{+}\right)$ 233.084, found 233.083.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydro-pyranyl)oxy]hept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]-6-methoxyquinoline (14). A solution of ethylmagnesium bromide in tetrahydrofuran ($43 \mathrm{~mL}, 1 \mathrm{M}$ solution, 43 mmol) was added to a solution of $\mathbf{1 0}(6.89 \mathrm{~g}, 36.2 \mathrm{mmol})$ and $\mathbf{1 2}(9.41 \mathrm{~g}, 32.5 \mathrm{mmol})$ in tetrahydrofuran $(210 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the initial evolution of gas, the mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$, and a solution of adamantyl chloroformate $(11.51 \mathrm{~g}, 53.6 \mathrm{mmol})$ in tetrahydrofuran (40 mL) was added via syringe pump over 90 min , maintaining the temperature at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$, stirred for 18 h , and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL}$ and $2 \times 150 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a brown oil. Flash column chromatography over silica gel eluting with $4: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$
gave $14(16.11 \mathrm{~g}, 75 \%)$: IR $\left(\mathrm{CHCl}_{3}\right) 1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(1 \mathrm{H}, \mathrm{s}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J$ $=2.8 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{dd}, J=11.0,1.4 \mathrm{~Hz}), 5.68-5.79(1 \mathrm{H}, \mathrm{s}), 5.67$ $(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{s}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=$ $16.0,1.4 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=16.0,1.4 \mathrm{~Hz}), 3.77-3.89(1 \mathrm{H}, \mathrm{m})$, $3.76(3 \mathrm{H}, \mathrm{s}), 3.46-3.58(1 \mathrm{H}, \mathrm{m}), 2.15(9 \mathrm{H}, \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{s}), 1.45-$ $1.89(6 \mathrm{H}, \mathrm{m}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,152.0,128.9,125.5,124.8,119.5,119.3,110.5$, $109.9,103.5,96.8,93.1,92.8,82.7,81.6,80.1,61.9,55.3,54.7,48.8$, $41.5,36.1,30.9,30.2,25.5,25.3,19.0,18.1,-4.3,-4.7$; HRMS (FAB) calcd for $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right) 657.349$, found 657.351.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-hydroxyhept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]-6-methoxyquinoline (16). Pyridinium p-toluenesulfonate ($1.23 \mathrm{~g}, 4.9 \mathrm{mmol}$) was added to a solution of $\mathbf{1 4}(16.1 \mathrm{~g}, 24.5 \mathrm{mmol})$ in ethanol $(320 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ and the solution heated at reflux for 18 h . After the solution was cooled to $25^{\circ} \mathrm{C}$, the solvent was evaporated in vacuo, and water (150 mL) added to the residue. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL}$ and $2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give the crude product. Flash chromatography over silica gel eluting with 3:2 pentane/ $\mathrm{Et}_{2} \mathrm{O}$ gave 16 ($12.58 \mathrm{~g}, 89 \%$). Alternatively 16 can be obtained from the crude product by crystallization from $4: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ ($12.15 \mathrm{~g}, 86 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 3474,1685,1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}), 6.52(1 \mathrm{H}$, d, $J=2.7 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{m}), 5.70-5.80(1 \mathrm{H}, \mathrm{m}), 5.68(1 \mathrm{H}, \mathrm{m}), 5.64$ $(1 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.15(9 \mathrm{H}, \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}$, $\mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3$, $152.2,128.9,125.3,124.8,119.9,119.6,110.5,109.9,103.6,95.3$, $93.2,82.5,81.9,80.2,55.3,51.3,48.9,41.5,36.1,30.9,25.5,18.1$, $-4.33,-4.71$; HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right) 579.291$, found 573.290.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-hydroxy (5,6-η^{2}-hexacarbonyldicobaltio)hept-3-ene-1,5-diynyl]-3-[(tert-butyldi-methylsilyl)oxy]-6-methoxyquinoline (18). A solution of dicobalt octacarbonyl $(2.67 \mathrm{~g}, 7.81 \mathrm{mmol})$ in tetrahydrofuran $(60 \mathrm{~mL})$ was added rapidly in a single portion to a stirred solution of $\mathbf{1 6}(4.27 \mathrm{~g}, 7.44 \mathrm{mmol})$ in tetrahydrofuran $(80 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After the initial evolution of gas the mixture was stirred at $25^{\circ} \mathrm{C}$ for 40 min , and evaporated to give a viscous brown oil. Flash column chromatography over silica gel eluting with 9:1 pentane/ $\mathrm{Et}_{2} \mathrm{O}$ gave a trace of the biscobalt complex as a black amorphous solid, followed by $18(3.77 \mathrm{~g}, 59 \%)$ as a red-brown amorphous solid. Further elution with 7:3 pentane/ $\mathrm{Et}_{2} \mathrm{O}$ gave 20 (2.02 $\mathrm{g}, 33 \%$) as a red brown amorphous solid. Finally, elution with 3:2 pentane/ $\mathrm{Et}_{2} \mathrm{O}$ gave $16(0.25 \mathrm{~g}, 6 \%)$. Data for 18: IR $\left(\mathrm{CHCl}_{3}\right) 2092$, 2056, 2026, 1687, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4(1 \mathrm{H}$, s), $6.6-6.72(2 \mathrm{H}, \mathrm{m}), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{s}), 5.66$ $(1 \mathrm{H}, \mathrm{s}), 5.62(1 \mathrm{H}, \mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{d}, J$ $=14.5 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.16(9 \mathrm{H}, \mathrm{s}), 1.65(6 \mathrm{H}, \mathrm{s}), 0.95(9 \mathrm{H}, \mathrm{s}), 0.25$ $(3 \mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.5,152.3,138.2$, $128.9,125.4,124.6,110.7,110.1,103.7,97.7,96.0,82.1,81.8,81.2$, $64.1,64.0,55.4,41.5,36.1,30.9,25.5,18.1,-4.3,-4.7$. This compound was used directly in the next step.

Recycling Incorrect Cobalt Regioisomer 20. Ceric ammonium nitrate ($5.15 \mathrm{~g}, 9.40 \mathrm{mmol}$) was added portionwise over $3-4 \mathrm{~min}$ to a solution of $\mathbf{2 0}(2.02 \mathrm{~g}, 2.35 \mathrm{mmol})$ and 2,6-di-tert-butyl-4-methylpyridine ($3.86 \mathrm{~g}, 18.8 \mathrm{mmol}$) in acetone $(24 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. After an initial evolution of gas the mixture was stirred for 20 min at $-10^{\circ} \mathrm{C}$ and quenched with N, N-diisopropylethylamine ($6.07 \mathrm{~g}, 47.0 \mathrm{mmol}$). The resulting dark brown slurry was eluted through a short column of silica gel with $1: 1 \mathrm{Et}_{2} \mathrm{O}$ /dichloromethane to give a viscous brown oil. Flash column chromatography over silica gel eluting with 3:2 pentane/ $\mathrm{Et}_{2} \mathrm{O}$ gave 16 ($1.03 \mathrm{~g}, 76 \%$).
N-[(Adamantyloxy)carbonyl]-15-oxo-13-methoxy-10-azabenzo-[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5-ene (24). Trifluoromethanesulfonic anhydride ($1.71 \mathrm{~mL}, 10.2 \mathrm{mmol}$) was added rapidly in a single portion to a stirred solution of $\mathbf{1 8}(2.18 \mathrm{~g}, 2.54 \mathrm{mmol})$ and 2,6 -di-tert-butyl-4-methylpyridine ($3.13 \mathrm{~g}, 15.2 \mathrm{mmol}$) in 2-nitropropane (55 mL) at $-10^{\circ} \mathrm{C}$. After being stirred for 30 min at $-10^{\circ} \mathrm{C}$, the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with 2-nitropropane (15 mL), and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and diluted with acetone (80 mL) to give an opaque red-brown solution. After cooling to $-10^{\circ} \mathrm{C}$, ceric ammonium nitrate ($13.93 \mathrm{~g}, 25.4 \mathrm{mmol}$)
was added portionwise over 3-4 min. After the initial gas evolution, the mixture was stirred for 20 min , and quenched with N, N-diisopropylethylamine ($8.85 \mathrm{~mL}, 50.8 \mathrm{mmol}$). Elution of the mixture through a short column of silica gel with $1: 1 \quad \mathrm{Et}_{2} \mathrm{O} /$ dichloromethane gave a viscous brown oil. Flash column chromatography over silica gel eluting with dichloromethane gave $24(0.59 \mathrm{~g}, 53 \%)$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ dichloromethane gave small white prisms: $\mathrm{mp} 115-119{ }^{\circ} \mathrm{C}$ dec (rapid heating in sealed capillary tube); IR $\left(\mathrm{CHCl}_{3}\right) 1733,1696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}$, $J=2.4,8.9 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{s}), 5.77(1 \mathrm{H}, \mathrm{s}), 5.75(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz})$, $5.62(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{X}$ of ABX), 3.47 $(1 \mathrm{H}, \mathrm{A}$ of ABX$), 3.19(1 \mathrm{H}, \mathrm{B}$ of ABX$), 2.13(9 \mathrm{H}, \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,157.1,151.8,129.5,129.3,126.8$, 126.3, 121.1, 112.3, 111.6, 99.1, 91.5, 90.0, 83.3, 82.3, 55.4, 54.2, 49.2, 41.4, 36.0, 30.9, 21.5; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{M}^{+}+1\right)$ 442.201, found 442.201.

15-Oxo-13-methoxy-10-azabenzo[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5-ene (26). Trifluoroacetic acid ($2.1 \mathrm{~mL}, 27.3 \mathrm{mmol}$) was added dropwise to a stirred solution of $24(481 \mathrm{mg}, 1.09 \mathrm{mmol})$ in dichloromethane (22 mL) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature, and after 1.5 h the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give a brown amorphous solid. Chromatography over silica gel eluting with 9:1 dichloromethane/ $\mathrm{Et}_{2} \mathrm{O}$ gave $26(224 \mathrm{mg}, 78 \%)$ as a white amorphous solid: $\mathrm{mp} 101-105^{\circ} \mathrm{C}$ dec (rapid heating in sealed capillary tube); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.6-6.8(3 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{d}, J$ $=9.2 \mathrm{~Hz}), 5.66(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.59$ $(1 \mathrm{H}, \mathrm{X}$ of ABX$), 3.55(1 \mathrm{H}, \mathrm{A}$ of ABX$), 3.22(1 \mathrm{H}, \mathrm{B}$ of ABX$) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,153.9,136.3,125.6,123.5,121.2$, 117.0, 112.9, 112.4, 99.9, 93.2, 89.9, 82.9, 55.5, 54.2, 48.6, 21.6; HRMS (CI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}\left(\mathrm{M}^{+}+1\right) 264.102$, found 264.102.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydro-pyranyl)oxy]hept-3-ene-1,5-diynyl]-3,4-dihydro-3,4-epoxy-6-[(triisopropylsilyl)oxy]quinoline (30). A solution of $29(7.7 \mathrm{~g}, 11.5 \mathrm{mmol})$, water (850 mL), and saturated $\mathrm{NaHCO}_{3}(850 \mathrm{~mL})$ in dichloromethane (850 mL) was treated with m-chloroperoxybenzoic acid ($7.94 \mathrm{~g}, 46.0$ mmol). After 10 min the mixture was diluted with dichloromethane $(850 \mathrm{~mL})$. After 24 h the reaction mixture was quenched with 1-pentene $(200 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 150 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give $\mathbf{3 0}$ (7.87 $\mathrm{g}, 100 \%$), which was used directly in the next step: IR $\left(\mathrm{CDCl}_{3}\right)$ 2944, 1693, $1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(1 \mathrm{H}, \mathrm{s}), 6.88$ $(1 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.76(1 \mathrm{H}, \mathrm{d}, J=$ $10.9 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{m}), 4.0$ $(1 \mathrm{H}, \mathrm{m}), 3.85-3.8(2 \mathrm{H}, \mathrm{m}), 3.60-3.50(1 \mathrm{H}, \mathrm{m}), 2.20-2.00(9 \mathrm{H}, \mathrm{br}$ d), $1.90-1.40(14 \mathrm{H}, \mathrm{m}), 1.30-1.20(3 \mathrm{H}, \mathrm{m}), 1.09(12 \mathrm{H}, \mathrm{s}), 1.07(6 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.7, $126.2,119.9,119.8,118.7$, $96.3,96.2,93.0,92.9,90.8,82.5,82.4,81.9,81.2,81.1,61.6,61.5$, 61.0, 54.3, 50.6, 41.2, 35.9, 30.7, 30.0, 25.2, 18.7, 17.7, 12.4; HRMS (CI) calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right) 685.380$, found 685.378 .
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydro-pyranyl)oxy]hept-3-ene-1,5-diynyl]-3,4-dihydro-3-hydroxy-4-(phenylseleno)-6-[(triisopropylsilyl)oxy]quinoline (31). To a slurry of diphenyl diselenide ($31.9 \mathrm{~g}, 102.1 \mathrm{mmol}$) in EtOH (735 mL) was added $\mathrm{NaBH}_{4}(3.22 \mathrm{~g}, 85.1 \mathrm{mmol})$ in small portions. The slurry was stirred for 1 h followed by slow addition (ca. 30 min) of $\mathbf{3 0}(23.3 \mathrm{~g}$, 34.0 mmol) dissolved in tetrahydrofuran (365 mL). The mixture was stirred for 4 h and quenched with water (2 L). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo, and the crude material was purified by chromatography over silica gel eluting with $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give $31(18.3 \mathrm{~g}, 64 \%)$ as a yellow oil: IR $\left(\mathrm{CDCl}_{3}\right) 3399,2944,1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(2 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.32-7.25(3 \mathrm{H}, \mathrm{m})$, $7.13(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}), 5.78(2 \mathrm{H}, \mathrm{s})$, $5.38(1 \mathrm{H}, \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{dt}, J=10.3,3.1 \mathrm{~Hz}), 4.40-4.25(3 \mathrm{H}, \mathrm{m}), 3.80$ $(1 \mathrm{H}, \mathrm{m}), 3.57(3 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{m}), 2.15(9 \mathrm{H}, \mathrm{s}), 1.8-1.57(12 \mathrm{H}, \mathrm{m})$, $1.19(5 \mathrm{H}, \mathrm{m}), 1.06(12 \mathrm{H}, \mathrm{s}), 1.04(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,152.5,132.6,131.6,129.3,129.1,128.7,127.1,126.0,120.4$, $119.4,119.3,119.2,118.9,96.1,93.8,92.5,83.0,82.1,81.4,75.5,61.5$, $54.5,47.0,41.3,36.0,30.7,29.9,25.2,18.6,17.8,12.4$; HRMS (CI) calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{NO}_{6} \mathrm{SiSe}\left(\mathrm{M}^{+}\right)$843.343, found 843.342.
$N-[($ Adamantyloxy $)$ carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydropyranyl)oxy] hept-3-ene-1,5-diynyl]-3,4-dihydro-3-[(tert-butyldimeth-ylsilyl)oxy]-4-(phenylseleno)-6-[(triisopropylsilyl)oxy]quinoline (32). A solution of $31(18.3 \mathrm{~g}, 21.9 \mathrm{mmol})$ in DMF (200 mL) was treated with tert-butyldimethylsilyl chloride (18.0 g) and imidazole (18.0 g). The mixture was stirred for 24 h , quenched with water (1.0 L), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and heated $\left(50^{\circ} \mathrm{C}\right)$ under reduced pressure to give 32 ($20.9 \mathrm{~g},>95 \%$ yield): IR $\left(\mathrm{CHCl}_{3}\right) 3059,2927$, $1687,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(2 \mathrm{H}, \mathrm{m}), 7.40-$ $7.25(4 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz})$, $5.76(2 \mathrm{H}, \mathrm{dd}, J=11.1,7.0 \mathrm{~Hz}), 5.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.67$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.39(2 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m})$, $2.14(9 \mathrm{H}, \mathrm{s}), 1.85-1.47(12 \mathrm{H}, \mathrm{m}), 1.24-1.15(5 \mathrm{H}, \mathrm{m}), 1.06(12 \mathrm{H}, \mathrm{s})$, $1.04(6 \mathrm{H}, \mathrm{s}), 0.75(9 \mathrm{H}, \mathrm{s}),-0.03(3 \mathrm{H}, \mathrm{s}),-0.11(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8,151.8,134.4,132.1,129.2,129.1,128.7,128.6$, 127.7, 121.0, 119.2, 119.1, 118.8, 96.7, 93.3, 92.8, 83.2, 83.0, 81.0, $74.6,61.8,54.7,54.6,46.9,41.5,36.1,30.8,30.2,25.7,25.3,18.9$, 17.8, 12.4, -4.9, -5.2; HRMS (CI) calcd for $\mathrm{C}_{53} \mathrm{H}_{75} \mathrm{NO}_{6} \mathrm{Si}_{2} \mathrm{Se}\left(\mathrm{M}^{+}\right)$ 957.430, found 957.434.
N-[(Adamantyloxy)carbonyl]-1,2-dihydro-2-[(Z)-7-[(tetrahydro-pyranyl)oxy]hept-3-ene-1,5-diynyl]-3-[(tert-butyldimethylsilyl)oxy]-6-[(triisopropylsilyl)oxy]quinoline (33). A solution of $\mathbf{3 2}(6.92 \mathrm{~g}, 7.24$ mmol) in dichloromethane (250 mL) was cooled to $0^{\circ} \mathrm{C}$, followed by addition of m-chloroperoxybenzoic acid $(1.50 \mathrm{~g}, 8.68 \mathrm{mmol})$ in small portions. After 1 h the mixture was warmed to $25^{\circ} \mathrm{C}$, pyridine (2.93 $\mathrm{mL}, 36.2 \mathrm{mmol}$) added, and the mixture heated at reflux for 5 h . The reaction was quenched by the addition of saturated aqueous NaHCO_{3} $(250 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo, and the residue was purified by chromatography over silica gel eluting with 1:1 $\mathrm{Et}_{2} \mathrm{O} /$ pentane to give $33\left(5.8 \mathrm{~g},>95 \%\right.$ yield): IR $\left(\mathrm{CDCl}_{3}\right) 2929$, $2360,1688,1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(1 \mathrm{H}, \mathrm{br}$ s), $6.59(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{d}, J$ $=10.9 \mathrm{~Hz}), 5.66(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 5.59(1 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{s}), 4.32$ $(2 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{m}), 2.15(9 \mathrm{H}, \mathrm{s}), 1.89-1.40(12 \mathrm{H}$, $\mathrm{m}), 1.25(5 \mathrm{H}, \mathrm{m}), 1.09(12 \mathrm{H}, \mathrm{s}), 1.07(6 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}$, s), $0.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,134.9,131.2$, 130.6, 128.9, 128.6, 127.5, 125.0, 119.1, 115.9, 103.5, 96.5, 93.0, 82.5, 81.2, 79.9, 61.6, 54.4, 41.3, 36.0, 30.7, 30.0, 25.4, 25.2, 18.8, 17.9, 17.7, 12.4, $-3.13,-4.5$; HRMS (CI) calcd for $\mathrm{C}_{47} \mathrm{H}_{6} \mathrm{NO}_{6} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$ 799.466, found 799.466.
N-[(Adamantyloxy)carbonyl]-13-hydroxy-15-oxo-10-azabenzo-[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5-ene (37). To a solution of $36(10.0 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added CsF (3.0 equiv), and the mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$. The mixture was warmed to $25^{\circ} \mathrm{C}$ for 2 h , poured onto saturated aqueous NaHCO_{3} $(30 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and chromatographed over silica gel eluting with 1:1 EtOAc/hexane to give 37 ($7.1 \mathrm{mg}, 95 \%$): IR (CDCl_{3}) $3596,2917,1735,1701,1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{m}), 5.80(2 \mathrm{H}, \mathrm{m}), 5.63$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{m}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.15$ $(1 \mathrm{H}, \mathrm{m}), 2.17(9 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.63(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.5, 153.3, 152.0, 129.8, 129.3, 127.1, 126.4, 121.2, 114.6, 112.7, 99.1, 91.6, 89.9, 83.3, 82.6, 65.9, 49.1, 41.5, 36.0, 30.9, 21.5; HRMS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}\left(\mathrm{M}^{+}+1\right) 428.186$, found 428.187.
N-[(Adamantyloxy)carbonyl]-1-(phenylseleneno)-15-oxo-13-meth-oxy-10-azabenzo[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5-ene (38). A solution of lithium bis(trimethylsilyl)amide in tetrahydrofuran (1.0 $\mathrm{M}, 0.48 \mathrm{~mL}, 0.48 \mathrm{mmol})$ was added dropwise to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 4}(192 \mathrm{mg}, 0.435 \mathrm{mmol})$ in tetrahydrofuran $(3.5 \mathrm{~mL})$. The resulting yellow solution was stirred under argon for 20 min and quenched by dropwise addition of a solution of phenylselenenyl bromide $(140 \mathrm{mg}, 0.58 \mathrm{mmol})$ in tetrahydrofuran $(0.25 \mathrm{~mL})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$, the cooling bath was removed, and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~mL})$ was added. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(8.0$ mL), the phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 6 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the solvent was evaporated in vacuo to give the crude product (310 mg). Flash chromatography over silica gel eluting with $\mathrm{Et}_{2} \mathrm{O} /$ pentane (1:4) gave $\mathbf{3 8}(241 \mathrm{mg}, 93 \%)$ as a pale yellow amorphous solid: IR (CDCl_{3}) 2913, 1721, $1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.15-7.50(6 \mathrm{H}, \mathrm{m}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=2.7,10.0 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{d}, J$ $=2.7 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{m}), 5.69(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{d}, J=$ $9.6 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}), 3.59(3 \mathrm{H}, \mathrm{s}), 3.31(1 \mathrm{H}, \mathrm{d}, J=17.4$ $\mathrm{Hz}), 2.19$ ($9 \mathrm{H}, \mathrm{s}$), $1.67(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.1$, $156.9,156.9,151.9,138.4,130.5,129.8,129.1,128.8,128.8,127.9$, $127.6,125.8,120.8,113.5,110.9,98.5,92.6,89.9,84.3,82.1,55.3$, $55.2,41.5,36.1,30.9,27.9$; HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Se}\left(\mathrm{M}^{+}\right)$ 597.142, found 597.140.
N-[(Adamantyloxy)carbonyl]-1-(2-oxopropyl)-15-oxo-13-methoxy-10-azabenzo[10a,14a]bicyclo[7.3.1]trideca-3,7-diyn-5-ene (42). A solution of m-chloroperoxybenzoic acid ($23.2 \mathrm{mg}, 0.134 \mathrm{mmol}$) in dichloromethane $(0.2 \mathrm{~mL})$ was added dropwise to a stirred solution of $38(59.0 \mathrm{mg}, 0.1 \mathrm{mmol})$, in dichloromethane (0.67 mL), under argon at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 45 min and treated with 1-[(trimethylsilyl)oxy]-1-methylethylene ($200 \mathrm{mg}, 1.54 \mathrm{mmol}$) followed by trimethylsilyl trifluoromethanesulfonate ($33.4 \mathrm{mg}, 0.15$ mmol). After 10 min at $-78^{\circ} \mathrm{C}$, the mixture was warmed to $0^{\circ} \mathrm{C}$, aqueous saturated $\mathrm{NaHCO}_{3}(4.0 \mathrm{~mL})$ was added, the mixture was diluted with dichloromethane (4.0 mL), and the phases were separated. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent evaporated in vacuo to give the crude product (79.3 mg). Purification by chromatography on a silica gel plate ($1.0 \mathrm{~mm}, 1: 1 \mathrm{Et}_{2} \mathrm{O} /$ pentane) gave $42(25 \mathrm{mg}, 51 \%)$ and $41(10 \mathrm{mg}, 22 \%)$. Data for 42: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.22(1 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=2.7,8.9 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz})$, $6.11(1 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{d}, J=24 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{d}, J=24 \mathrm{~Hz}), 3.0(2 \mathrm{H}$, m), $2.18(9 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{s}), 1.65(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6,157.4,153.4,133.3,130.8,130.8,128.9,127.1,122.1,118.9$, $112.8,112.0,99.9,93.8,89.9,84.2,82.1,58.2,56.5 .53 .5,41.8,36.4$, 32.3, 32.2, 30.1; HRMS (FAB) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$497.220, found 497.222.

Cycloaromatized Adduct 48. A solution of $24(35 \mathrm{mg}, 79.3 \mu \mathrm{~mol})$ in 3,6 -dihydrotoluene (4 mL) under an argon atmosphere was heated in an oil bath at $114^{\circ} \mathrm{C}$, and aliquots were removed after $20(88 \%$, 24), $40(69 \%$, 24), $60(53 \%, \mathbf{2 4}), 90(42 \%, 24), 150(27 \%, 24)$, and $210(14 \%, 24) \min$ for ${ }^{1} \mathrm{H}$ NMR analysis. The combined aliquots were purified by PLC eluting with $\mathrm{Et}_{2} \mathrm{O}$ to give 48 ($23.8 \mathrm{mg}, 68 \%$): mp $126-129^{\circ} \mathrm{C}$ (from EtOAc); IR $\left(\mathrm{CHCl}_{3}\right) 1743,1698 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\lambda_{\text {max }}(\epsilon) 247.5\left(9.32 \times 10^{3}\right), 295.5\left(2.09 \times 10^{3}\right) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{br}, J=9.2 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $1.9 \mathrm{~Hz}), 7.13-7.25(2 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}$, $J=9.2,2.9 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 5.79(\mathrm{X}$ of ABX), 3.73 $(3 \mathrm{H}, \mathrm{s}), 3.64-3.55$ (B of ABX), $3.39-3.30$ (A of ABX), 2.22 ($9 \mathrm{H}, \mathrm{s}$), $1.68(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.8, 156.4, 152.4, 135.6, 133.5, 131.8, 130.1, 128.8, 128.7, 128.3, 127.4, 124.8, 113.0, 112.3, 82.2, 60.6, 55.4, 49.9, 43.9, 41.6, 36.1, 31.0; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 443.210$, found 443.210 . The same experiment was carried out at 98,81 , and $65^{\circ} \mathrm{C}$ to provide the data for an Arrhenius plot, Table 1. Prolonged reactions gave rise to by-product 52 (see below).

Cycloaromatized Adduct 49. A solution of $26(13 \mathrm{mg}, 49 \mu \mathrm{~mol})$ in 3,6 -dihydrotoluene (2 mL) under an argon atmosphere was heated in an oil bath at $114^{\circ} \mathrm{C}$, and aliquots were removed as above for ${ }^{1} \mathrm{H}$ NMR analysis. The combined aliquots were purified by PLC eluting with $10 \% \mathrm{Et}_{2} \mathrm{O} /$ dichloromethane to give $\mathbf{4 9}(9.3 \mathrm{mg}, 72 \%)$: $\mathrm{mp} 218-$ $220^{\circ} \mathrm{C}$ (from dichloromethane); IR $\left(\mathrm{CHCl}_{3}\right) 3392,1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.16(3 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz})$, $6.65-6.53(2 \mathrm{H}, \mathrm{m}), 6.47(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}$, s), $3.76-3.62(2 \mathrm{H}, \mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}) $\delta 207.0,153.8,138.6,134.8,133.1,128.9,128.6,128.4,127.5$, 126.7, 117.12, 114.4, 113.4, 61.1, 55.7, 49.4, 44.7; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$265.110, found 265.110.

Cycloaromatized Adduct 50. A solution of $\mathbf{4 4}(42.3 \mathrm{mg}, 87.1$ $\mu \mathrm{mol}$) in 3,6-dihydrotoluene (4 mL) under an argon atmosphere was heated in an oil bath at $114^{\circ} \mathrm{C}$, and aliquots were removed as above for ${ }^{1} \mathrm{H}$ NMR analysis. The combined aliquots were purified by PLC eluting with $10 \% \mathrm{Et}_{2} \mathrm{O} /$ dichloromethane to give $\mathbf{5 0}(44.4 \mathrm{mg},>95 \%)$ as a viscous pale yellow oil: IR $\left(\mathrm{CHCl}_{3}\right) 1742,1697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{dd}, J=1.3$, $6.9 \mathrm{~Hz}), 7.22-7.10(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J$ $=7.1 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{dd}, J=2.8,9.1 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{A}$ of AB, $J=9.9 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{B}$ of $\mathrm{AB}, J=9.9 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s})$,
$3.42(3 \mathrm{H}, \mathrm{s}), 3.37(1 \mathrm{H}, \mathrm{A}$ of $\mathrm{AB}, J=16.1 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{B}$ of AB, J $=16.1 \mathrm{~Hz}), 2.21(9 \mathrm{H}, \mathrm{s}), 1.68(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.0, 156.5, 152.2, 135.4, 134.1, 129.7, 129.1, 128.7, 128.1, 127.3, $124.7,112.6,111.4,82.1,72.7,60.5,59.6,55.3,53.9,46.3,41.6,36.1$, 31.0, one quaternary resonance not detected; HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 487.236$, found 487.235.

Cycloaromatized Adduct 52. Sodium borohydride ($2.0 \mathrm{mg}, 51.6$ $\mu \mathrm{mol})$ was added to a solution of $24(22.8 \mathrm{mg}, 51.6 \mu \mathrm{~mol})$ in tetrahydrofuran ($500 \mu \mathrm{~L}$) and $\mathrm{MeOH}(500 \mu \mathrm{~L}$). After 30 min an additional 1 equiv of sodium borohydride was added and the mixture stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was treated with 2 N $\mathrm{HCl}(1 \mathrm{~mL})$ and neutralized with aqueous NaHCO_{3} solution. The mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give a residue which was purified by chromatography over silica gel eluting with dichloromethane/EtOAc (3:1) to give 52 ($9.9 \mathrm{mg}, 43 \%$): mp $210-212{ }^{\circ} \mathrm{C}$ (from EtOAc); IR $\left(\mathrm{CHCl}_{3}\right)$ 3457, 1698, $1679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ $(1 \mathrm{H}, \mathrm{s}), 7.43(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.19-7.06(2 \mathrm{H}, \mathrm{m}), 6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{br}$, $J=6.9 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=9.1,2.9 \mathrm{~Hz})$, 5.68-5.60 ($1 \mathrm{H}, \mathrm{m}$), $4.47-4.39(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{dd}, J$ $=15.8,4.7 \mathrm{~Hz}), 3.39-3.31(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.23$ $(9 \mathrm{H}, \mathrm{s}), 1.95\left(1 \mathrm{H}, \mathrm{d}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable) $1.69(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,152.8,134.2,132.7,132.0,131.0,128.9,128.7$, $127.9,126.7,124.3,113.7,112.5,81.5,66.4,65.9,55.4,54.5,41.7$, 38.7, 36.2, 33.7, 31.0; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$445.225, found 445.225.
(\boldsymbol{E})-Nitrile 53. A 2.5 M solution of n-butyllithium in hexanes (41 $\mathrm{mL}, 103 \mathrm{mmol}, 1.05$ equiv) was added dropwise to a stirred solution of diethyl (cyanomethyl)phosphonate ($17 \mathrm{~mL}, 108 \mathrm{mmol}, 1.10$ equiv) in anhydrous tetrahydrofuran $(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After being stirred for 40 min at $25^{\circ} \mathrm{C}$, the colorless solution was added dropwise to a solution of $\mathbf{2 4}(43.2 \mathrm{mg}, 98 \mathrm{mmol}, 1.00$ equiv) in tetrahydrofuran (1.5 mL) at $0^{\circ} \mathrm{C}$. The clear orange solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min , eluted with dichloromethane through a short column of silica gel, and evaporated to give a viscous brown oil. Purification of the crude product by chromatography over silica gel eluting with dichloromethane gave $\mathbf{5 3}$ as a white amorphous solid ($45.6 \mathrm{mg}, 85 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 2223$, $1694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.42(1 \mathrm{H}, \mathrm{m}), 6.70-$ $6.80(2 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{s}), 5.78(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J=$ $9.4 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{s}), 4.22(1 \mathrm{H}, \mathrm{X}$ of ABX$), 3.79(3 \mathrm{H}, \mathrm{s}), 3.56-3.38$ $\left(2 \mathrm{H}, \mathrm{AB}\right.$ of ABX), $2.17(3 \mathrm{H}, \mathrm{s}), 2.10(6 \mathrm{H}, \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5,157.0,151.7,129.5,129.3,127.2,126.5$, 121.7, 115.3, 112.4, 111.26, 100.2, 97.3, 94.0, 88.8, 83.0, 82.3, 55.4, 49.4, 41.5, 40.3, 36.0, 30.8, 24.9. HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right) 464.210$, found 464.211.

Cycloaromatized Adduct 54. A solution of $\mathbf{5 3}(11.6 \mathrm{mg}, 25 \mu \mathrm{~mol})$ in tetrahydrofuran- $d_{8}(1 \mathrm{~mL})$ under an argon atmosphere was heated in an oil bath at $60^{\circ} \mathrm{C}$, and aliquots were removed for ${ }^{1} \mathrm{H}$ NMR analysis. The combined aliquots were purified by PLC eluting with $10 \% \mathrm{Et}_{2} \mathrm{O} /$ dichloromethane to give 54 ($5.4 \mathrm{mg}, 47 \%$): mp $224-225{ }^{\circ} \mathrm{C}$ (from EtOAc); IR $\left(\mathrm{CHCl}_{3}\right) 2224,1683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.50-7.30(2 \mathrm{H}, \mathrm{m}), 7.21-7.10(2 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$, $6.68(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}), 6.13(1 \mathrm{H}, \mathrm{s})$, $5.46(1 \mathrm{H}, \mathrm{s}), 4.34(1 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.38(1 \mathrm{H}, \mathrm{dd}, J=6.1,4.3 \mathrm{~Hz})$, $3.20(1 \mathrm{H}, \mathrm{dd}, J=16.1,2.2 \mathrm{~Hz}), 2.20(9 \mathrm{H}, \mathrm{s}), 1.68(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2,156.5,152.6,134.9,133.9,130.9,129.4$, $129.0,128.7,128.6,127.3,125.4,115.5,113.2,112.4,91.5,82.2,56.3$, 55.5, 43.1, 41.9, 41.1, 36.3, 31.1; HRMS (CI) $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$calcd for 466.226 , found 466.227 .

Cycloaromatized Adduct 55. To a solution of $\mathbf{4 8}$ ($23.8 \mathrm{mg}, 53.7$ $\mu \mathrm{mol}$) in dichloromethane (1 mL) was added m-chloroperoxybenzoic acid ($18.5 \mathrm{mg}, 53.7 \mathrm{mmol}$), and the mixture stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . Saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added, and the mixture extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo. The residue was purified by PLC eluting with 1:1 pentane/Et $\mathrm{E}_{2} \mathrm{O}$ to give $55(14.5 \mathrm{mg}, 59 \%)$: mp 193-195 ${ }^{\circ} \mathrm{C}$ (from EtOAc); IR $\left(\mathrm{CHCl}_{3}\right) 1746,1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34(1 \mathrm{H}, \mathrm{s}), 7.29-7.14(3 \mathrm{H}, \mathrm{m}), 7.08-6.98(2 \mathrm{H}, \mathrm{m}), 6.64(1 \mathrm{H}, \mathrm{dd}, J$ $=8.9,2.8 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{X}$ of ABX), 3.76 $(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{A}$ of ABX$), 3.16(1 \mathrm{H}, \mathrm{B}$ of ABX$), 2.20(9 \mathrm{H}, \mathrm{s})$, $1.69(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 173.6, 157.5, 152.5, 134.9, 131.7, 130.4, 129.6, 129.2, 129.0, 126.8, 113.0, 112.8. 85.3, 83.0, 55.4,
52.2, 41.3, 39.2, 36.1, 30.9, two aromatic resonances not detected; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 459.205$, found 459.204.

Lactone 56. To a solution of $24(45.9 \mathrm{mg}, 104 \mu \mathrm{~mol})$ in dichloromethane (4 mL) was added m-chloroperoxybenzoic acid (71.8 $\mathrm{mg}, 416 \mu \mathrm{~mol}$), and the mixture stirred at $25^{\circ} \mathrm{C}$ for 20 h . Workup as for $\mathbf{5 5}$ gave 56 ($39.2 \mathrm{mg}, 82 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 3200,1757,1721 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{d}, J=10.1$ $\mathrm{Hz}), 5.66(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 4.10-4.03(1 \mathrm{H}, \mathrm{X}$ of ABX), $3.74(3 \mathrm{H}$, s), $3.26-3.16(1 \mathrm{H}, \mathrm{B}$ of ABX), , 3.13-2.95 ($1 \mathrm{H}, \mathrm{A}$ of ABX), 2.09 (3 H , s), $2.07(6 \mathrm{H}, \mathrm{s}), 1.57(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}$) δ $173.4,160.8,152.8,152.6,136.3,131.5,130.9,126.8,118.2,114.6$, 114.1, 98.6, 91.9, 89.2, 85.6, 80.9, 55.6, 44.6, 41.2, 36.1, 31.1, 23.7; MS (FAB) base peak 135, no M+1 detected.

Indole 57. A solution of $\mathbf{5 6}(38.0 \mathrm{mg}, 80.2 \mu \mathrm{~mol})$ in $3,6-$ dihydrotoluene (8 mL) was heated in a sealed tube at $140^{\circ} \mathrm{C}$ for 20 h . The mixture was evaporated in vacuo and the residue purified by chromatography over silica gel eluting with dichloromethane to give 57 ($5.0 \mathrm{mg}, 15 \%$): $\mathrm{mp} 206-207^{\circ} \mathrm{C}$ (from dichloromethane/Et $\mathrm{E}_{2} \mathrm{O}$); IR $\left(\mathrm{CHCl}_{3}\right)$ 1786, 1762, $1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ $(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.72-7.65(1 \mathrm{H}, \mathrm{m})$, $7.58(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.50-7.41(1 \mathrm{H}, \mathrm{m}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=9.0$, $2.7 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{B}$ of $\mathrm{AB}, J=17.4 \mathrm{~Hz})$, $3.70(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{A}$ of $\mathrm{AB}, J=17.4 \mathrm{~Hz}), 2.26(6 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}$, s), $1.69(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.7, 173.2, 157.1, 153.5, 148.4, 135.9, 134.4, 134.2, 129.9, 128.4, 126.5, 125.7, 116.6, 113.6, 108.4, 84.5, 55.7, 41.4, 38.7, 36.1, 31.0; HRMS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right) 413.200$, found 413.199.
[2-[N-(Adamantoxycarbonyl)amino]phenyl]-1,2,3,4-tetrahydro-1-oxo-4,8-bis(3,5-dimethylphenyl)thio]naphthalene (58). A slurry of NaH (4 equiv) in tetrahydrofuran (10 mL) was treated with $3,5-$ dimethylthiophenol (30 equiv). The mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$, followed by dropwise addition of $23(0.60 \mathrm{~g})$ in tetrahydrofuran $(5 \mathrm{~mL})$. After 10 min , the cooling bath was removed and the mixture was stirred for 4 h . The mixture was quenched with water (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude mixture was purified by chromatography over silica gel to give $\mathbf{5 8}(0.73 \mathrm{~g}, 73 \%)$: IR $\left(\mathrm{CHCl}_{3}\right) \delta 3413,2916,1712,1663 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.31-$ $7.00(8 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.80(2 \mathrm{H}, \mathrm{m}), 4.75(1 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{X}$ of ABX), 2.82-2.63 ($2 \mathrm{H}, \mathrm{AB}$ of ABX), 2.32 ($6 \mathrm{H}, \mathrm{s}$), 2.29 ($6 \mathrm{H}, \mathrm{s}$), 2.11 $(9 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.6, 153.6, $146.5,144.7,139.3,138.7,136.5,133.4,133.3,132.5,131.7,131.1$, 130.7, 129.9, 129.4, 129.3, 127.9, 127.6, 126.4, 126.2, 125.3, 124.0, 80.0, 79.8, 48.5, 48.0, 41.4, 36.0, 30.7, 21.1, 21.0; HRMS (CI) calcd for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+1\right) 688.290$, found 688.292 .

1-[(3,5-Dimethylphenyl)thio]-11H-benzo[a]carbazole (59). A solution of $58(650 \mathrm{mg}, 1.18 \mathrm{mmol})$ in dichloromethane $(10.0 \mathrm{~mL})$ was treated with trifluoroacetic acid ($5.18 \mathrm{~mL}, 59.1 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 h , quenched with saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was purified by chromatography over silica gel eluting with dichloromethane to give 59 ($100 \mathrm{mg}, 24 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 3397,2921,1601$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$) $\delta 11.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.31(1 \mathrm{H}$, d, $J=8.5 \mathrm{~Hz}), 8.19(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.1$ $\mathrm{Hz}), 7.84(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.1 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.76$ $(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dt}), 7.25$ $(1 \mathrm{H}, \mathrm{dt}), 6.88\left(2 \mathrm{H}, \mathrm{br}\right.$ s), $6.77(1 \mathrm{H}, \mathrm{s}), 2.12(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,137.9,137.0,136.3,134.6,134.2,131.0,128.3$, $126.5,125.3,125.0,124.8,124.7,123.1,122.7,120.6,120.1,119.9$, 119.6, 111.3, 21.2; HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NS}\left(\mathrm{M}^{+}\right) 353.123$, found 353.124.
[2-[N-(Adamantoxycarbonyl)amino]phenyl]-1-hydroxy-8-[(3,5dimethylphenyl)thio]naphthalene (60). To a slurry of $\mathrm{NaH}(9.0 \mathrm{mg}$, $0.364 \mathrm{mmol})$ in tetrahydrofuran (3 mL) was added a solution of $\mathbf{5 8}$ ($20 \mathrm{mg}, 0.036 \mathrm{mmol}$) in tetrahydrofuran (3 mL). The mixture was stirred for 5 h followed by the addition of water (3 mL). The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude product was purified by chromatography over silica gel eluting with $20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give $\mathbf{6 0}(11.4 \mathrm{mg}, 72 \%)$ as a yellow solid: IR
$\left(\mathrm{CDCl}_{3}\right) 3424,3188,2915,1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.7(1 \mathrm{H}, \mathrm{s}), 8.00(1 \mathrm{H}, \mathrm{bd}, J=7.5 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.2$ $\mathrm{Hz}), 7.72(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.47$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0,7.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{dt}, J=$ $7.5,2.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, 7.7,2.0 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.3 \mathrm{~Hz})$, $6.79(2 \mathrm{H}, \mathrm{s}), 6.74(1 \mathrm{H}, \mathrm{s}), 2.19(6 \mathrm{H}, \mathrm{s}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.03(6 \mathrm{H}, \mathrm{s}), 1.61$ $(6 \mathrm{H}, \mathrm{s})$; HRMS (CI) calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S} 549.233$, found 549.234. 23a is missing signals at $\delta 7.72$ and 7.53 in the ${ }^{1} \mathrm{H}$ NMR spectrum.

1,4-Dihydro-1,4-epoxy-2-(methoxycarbonyl)-3-(3-methylpyrid-2-yl)-5,8-dimethoxynaphthalene (63). A mixture of 4,7-dimethoxyisobenzofuran ($0.99 \mathrm{~g}, 5.50 \mathrm{mmol}$) and $62(1.02 \mathrm{~g}, 5.80 \mathrm{mmol})$ in benzene (30 mL) was heated at reflux for 18 h . The mixture was cooled to room temperature and concentrated in vacuo. The crude product was purified by chromatography over silica gel eluting with EtOAc to give 63 ($1.95 \mathrm{~g}, 100 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 2954,1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$, $7.13(1 \mathrm{H}, \mathrm{dd}, J=7.7,4.4 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, $6.06(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.62(3 \mathrm{H}, \mathrm{s}), 2.02$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.4, 151.7, 148.6, 148.4, 146.7, $142.6,137.5,135.5,135.0,132.0,122.9,113.67,113.4,85.7,82.0$, 56.7, 56.8, 51.6, 18.2; HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+1\right)$ 354.134, found 354.133.

2-(Methoxycarbonyl)-3-(3-methylpyrid-2-yl)-4-[(tert-butyldimeth-ylsilyl)oxy]-5,8-dimethoxynaphthalene (64). To a mixture of 2,6 lutidine ($0.66 \mathrm{~mL}, 5.66 \mathrm{mmol}$) and $63(0.10 \mathrm{~g}, 0.28 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl trifluoromethanesulfonate ($0.325 \mathrm{~mL}, 1.42 \mathrm{mmol}$). The mixture was stirred at room temperature for 18 h , quenched with water (10 mL), and extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and purified by chromatography over silica eluting with EtOAc to give $64(0.132 \mathrm{~g}, 99.6 \%)$ as a pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) 2955,2898,1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.48(1 \mathrm{H}, \mathrm{s}), 8.44(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=7.5$ $\mathrm{Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=7.5,4.7 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{q}, J=8.5 \mathrm{~Hz}), 3.95$ $(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 0.75(9 \mathrm{H}, \mathrm{s}),-0.23$ $(3 \mathrm{H}, \mathrm{s}),-0.54(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,158.8$, $150.7,149.8,149.2,145.9,136.9,133.9,130.6,128.6,127.4,122.1$, $121.9,118.5,107.6,104.7,55.8,55.7,51.9,25.9,19.2,18.3,-3.9$, -4.3 ; HRMS (CI) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right) 467.213$, found 467.214 .

8,11-Dimethoxy-12-hydroxy-6-[(tert-butylcarbonyl)oxy]naphtho-[2,3-h]quinoline (65). A solution of tetrahydrofuran (2 mL) and diisopropylamine ($0.18 \mathrm{~mL}, 1.28 \mathrm{mmol}$) was cooled to $0^{\circ} \mathrm{C}$ followed by addition of $n-\operatorname{BuLi}(2.5 \mathrm{M}, 0.43 \mathrm{~mL}, 1.07 \mathrm{mmol})$. After 30 min , $64(0.10 \mathrm{~g}, 0.21 \mathrm{mmol})$ in tetrahydrofuran $(3 \mathrm{~mL})$ was added. The mixture was warmed to room temperature for 2 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the aqueous layer extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and dissolved in dichloromethane (10 mL) containing pyridine ($0.70 \mathrm{~mL}, 8.56 \mathrm{mmol}$) and pivaloyl chloride (0.52 $\mathrm{mL}, 4.28 \mathrm{mmol}$). The mixture was stirred overnight, concentrated in vacuo, and purified by chromatography over silica gel eluting with EtOAc to give $\mathbf{6 5}(0.62 \mathrm{~g}, 72 \%)$ as a pale yellow powder: IR $\left(\mathrm{CHCl}_{3}\right)$ 2935, 1752, 1624, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71$ $(1 \mathrm{H}, \mathrm{dd}, J=4.8,1.4 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{s}), 8.14(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.4 \mathrm{~Hz})$, $7.52(1 \mathrm{H}, \mathrm{dd}, J=7.9,4.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $6.81(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.07(3 \mathrm{H}, \mathrm{s}), 4.00(3 \mathrm{H}, \mathrm{s}), 1.57(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,159.7,152.4,149.3,148.5,147.4$, 143.1, 135.7, 128.5, 126.6, 126.0, 120.8, 115.9, 115.2, 111.2, 104.8, 104.5, 104.2, 56.8, 56.0, 40.3, 27.4; HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{5}$ $\left(\mathrm{M}^{+}\right)$405.158, found 405.158.

8,11-Dimethoxy-7,12-dioxo-6-[(tert-butylcarbonyl)oxy]naphtho-[2,3-h]quinoline (66). To a slurry (sonicated for 5 min) of $\mathrm{Ag}^{\mathrm{II}} \mathrm{O}(12.2$ $\mathrm{mg}, 98.8 \mathrm{mmol})$, $65(10.0 \mathrm{mg}, 24.7 \mathrm{mmol})$, and dioxane (0.75 mL , freshly distilled over sodium) was added $6 \mathrm{M} \mathrm{HNO}_{3}(0.05 \mathrm{~mL})$. The mixture rapidly changed from a green-yellow color to an intense red color. The mixture was stirred for 3 min and quenched with a mixture of chloroform and water ($4: 1,5 \mathrm{~mL}$). The aqueous layer was extracted with chloroform $(3 \times 5 \mathrm{~mL})$, and the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was purified by preparative plate chromatography eluting with EtOAc to give 66 $(7.5 \mathrm{mg}, 72 \%)$ as an orange-yellow solid: IR $\left(\mathrm{CHCl}_{3}\right) 2934,1752$, $1685,1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(1 \mathrm{H}, \mathrm{dd}, J=$ $4.2,1.0 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{s}), 7.51(1 \mathrm{H}$,
dd, $J=8.3,4.2 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}, J=9.3$ $\mathrm{Hz}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 1.47(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.1,182.7,177.3,153.0,151.9,151.8,144.9,142.6,135.4,134.4$, 131.2, 131.0, 125.4, 125.2, 124.1, 123.1, 118.9, 118.7, 57.1, 56.3, 39.25, 27.1; HRMS (CI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{6}\left(\mathrm{M}^{+}\right) 419.137$, found 419.137.

6,8,11-Triacetoxy-7,12-dioxonaphtho $2,3-h] q u i n o l i n e ~(68) . ~ A ~ s o-~$ lution of $66(20.0 \mathrm{mg}, 47.7 \mathrm{mmol})$ in $5: 1$ aqueous hydrogen bromide $(48 \%) /$ glacial acetic acid was heated at reflux for 4 h . The mixture was concentrated to dryness in vacuo followed by addition of acetic anhydride (3 mL) and pyridine $(2 \mathrm{~mL})$. The reaction mixture was stirred for 12 h and concentrated to dryness in vacuo. The product was purified by preparative plate chromatography eluting with EtOAc to give $68(14.1 \mathrm{mg}, 68 \%)$ as an orange-yellow solid: $\mathrm{mp}>175{ }^{\circ} \mathrm{C}$ dec; IR $\left(\mathrm{CDCl}_{3}\right) 2985,1771,1686,1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.23(1 \mathrm{H}, \mathrm{dd}, J=4.8,2.3 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.3$ $\mathrm{Hz}), 7.77(1 \mathrm{H}, \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=8.2$ $\mathrm{Hz}), 7.33(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 2.51(3 \mathrm{H}, \mathrm{s}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.3,183.6$ 169.6, 169.1, 169.1, 157.6, $153.6,146.5,146.1,143.3,135.6,131.9,131.3,130.3,129.3,128.4$, 127.2, 126.4, 125.2, 121.7, 21.2, 21.0, 21.0; HRMS (CI) calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NO}_{8}\left(\mathrm{M}^{+}+1\right) 434.088$, found 434.089 .

2,5-Dimethoxyphthalide (70). To a stirred solution of $69(8.86 \mathrm{~g}$, $52.72 \mathrm{mmol})$ in dry tetrahydrofuran $(180 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of $2.5 \mathrm{M} n$-butyllithium in hexanes ($42 \mathrm{~mL}, 105.55$ mmol). The mixture was slowly warmed to $70^{\circ} \mathrm{C}$, allowed to stir for 2.0 h , and then cooled to $0^{\circ} \mathrm{C}$. Dry carbon dioxide was bubbled through the solution for 0.25 h , followed by addition of an excess of 2 M hydrochloric acid. Phthalide 70 precipitated as a colorless crystalline solid ($4.32 \mathrm{~g}, 42 \%$) which was collected via vacuum filtration, and rinsed with hexanes. The mother liquors were extracted with chloroform $(3 \times 100 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated in vacuo. Purification by chromatography over silica gel eluting with petroleum ether/EtOAc (4:1) gave a further quantity of $70(3.87 \mathrm{~g}, 38 \%)$, total yield 80% : mp $167-168^{\circ} \mathrm{C}$ (from EtOAc/hexanes); IR (thin film) 1762, $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.02(1 \mathrm{H}, \mathrm{d}, J=8.77 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.77 \mathrm{~Hz}), 5.16$ $(2 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s})$; HRMS (CI) calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}+1\right)$ 195.066, found 195.066.
2α-Carbethoxy-3 β-(3-methylpyrid-2-yl)-4 β-hydroxy-5,8-dimethoxy-3,4-dihydro-1(2H)-naphthenone (71). To a stirred solution of diisopropylamine $(2.09 \mathrm{~g}, 20.62 \mathrm{mmol})$ in dry tetrahydrofuran $(80 \mathrm{~mL})$ at $-60{ }^{\circ} \mathrm{C}$ was added n-butyllithium ($1.32 \mathrm{~g}, 20.62 \mathrm{mmol}$) in hexanes (6.31 mL). After $0.75 \mathrm{~h}, 70(2.00 \mathrm{~g}, 10.31 \mathrm{mmol})$ was added to the mixture, and the mixture was allowed to stir for 1 h . Ethyl 3-(3-methylpyrid-2-yl)propenoate $(1.97 \mathrm{~g}, 10.31 \mathrm{mmol})$ was added to the mixture, and after 0.5 h at $-78{ }^{\circ} \mathrm{C}$ the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and diluted with distilled water (100 $\mathrm{mL})$, and the resulting solution extracted with chloroform (3×100 $\mathrm{mL})$. The combined extracts were washed with water $(3 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated in vacuo to give 71 as a colorless solid $(3.80 \mathrm{~g}, 96 \%)$ and a mixture of diastereomers: IR (thin film) 3292, 2965, 1715, $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(1 \mathrm{H}, \mathrm{d}, J$ $=3.9 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.11-7.15(2 \mathrm{H}, \mathrm{m}), 7.11-7.15$ $(2 \mathrm{H}, \mathrm{m}), 6.96-6.99(1 \mathrm{H}, \mathrm{d}, J=9.02 \mathrm{~Hz}), 6.30-6.38(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OH})$, $5.40(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 3.87-4.07(2 \mathrm{H}$, $\mathrm{m}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6}\left(\mathrm{M}^{+}+1\right) 386.160$, found 386.160.

Ethyl 1-(Pivaloyloxy)-3-(3-methylpyrid-2-yl)-5,8-dimethoxy-2naphthoate (72). To a stirred solution of $71(7.50 \mathrm{~g}, 19.48 \mathrm{mmol})$ in chloroform (500 mL) at $40{ }^{\circ} \mathrm{C}$ was added p-toluenesulfonic acid monohydrate $(20.00 \mathrm{~g})$, and the mixture was allowed to stir for 15.0 h . The mixture was made basic with saturated aqueous $\mathrm{NaHCO}_{3}(500$ mL), and the chloroform layer separated. The aqueous phase was extracted with chloroform $(3 \times 100 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to give a moderately stable
colorless solid ($6.90 \mathrm{~g}, 96 \%$): IR $\left(\mathrm{CHCl}_{3}\right) 3340,2941,1733,1612$, $1369,1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.30(1 \mathrm{H}, \mathrm{s}), 8.43$ $(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 8.43(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{s}), 7.52(1 \mathrm{H}$, $\mathrm{d}, J=7.5 \mathrm{~Hz}), 7.15(1 \mathrm{H}$, dd, $J=4.8,7.5 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{s}), 3.89-$ $4.05(5 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.19(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$. To a stirred solution of the above compound ($1.88 \mathrm{~g}, 5.12 \mathrm{mmol}$) in dry dichloromethane $(20 \mathrm{~mL})$ at $26^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(5.18 \mathrm{~g} 51.23 \mathrm{mmol})$ followed by a catalytic amount of 4-(dimethylamino)pyridine. Pivaloyl chloride ($3.71 \mathrm{~g}, 30.74 \mathrm{mmol}$) was added over 0.5 h . After an additional 1.0 h , the dichloromethane and excess pivaloyl chloride were removed in vacuo. The resulting residue was chromatographed over silica gel eluting with EtOAc/petroleum ether (2:3). The product 72 (2.10 g , 87\%) was crystallized from hexanes/EtOAc to give needles: mp 123$125^{\circ} \mathrm{C}$; IR (thin film) 2981, 2936, 1756, $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.6 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{s}), 3.95(2 \mathrm{H}, \mathrm{q}$, $J=7.1 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.38(9 \mathrm{H}, \mathrm{s}), 0.86$ $(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}) ;$ HRMS (CI) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{6}\left(\mathrm{M}^{+}+1\right)$ 452.206, found 452.207.

6-Ethoxy-7-hydroxy-8,11-dimethoxynaphtho[2,3-h]quinoline (73). To a stirred solution of diisopropylamine ($0.225 \mathrm{~g}, 2.22 \mathrm{mmol}$) in dry tetrahydrofuran $(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of n-butyllithium ($0.142 \mathrm{~g}, 2.22 \mathrm{mmol}$) in dry hexanes $(0.734 \mathrm{~mL})$. After $0.75 \mathrm{~h}, 72(0.200 \mathrm{~g}, 0.443 \mathrm{mmol})$ was added to the solution. The mixture was warmed to $26^{\circ} \mathrm{C}$, after 0.5 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL) was added to the mixture, and the resulting solution was extracted with chloroform $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated in vacuo. Chromatography over silica gel eluting with EtOAc/hexanes (2:3) gave 73 as a yellow solid ($0.143 \mathrm{~g}, 95 \%$): mp 205-210 ${ }^{\circ} \mathrm{C}$ (from hexanes/EtOAc, yellow needles); IR (thin film) 3333, 2966, $1621 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.01(1 \mathrm{H}, \mathrm{s}), 9.67(1 \mathrm{H}, \mathrm{s}), 8.81(1 \mathrm{H}, \mathrm{dd}, J=1.5,4.4$ $\mathrm{Hz}), 7.89(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=4.4,7.9 \mathrm{~Hz})$, $6.73-6.75(2 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{s}), 4.39(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 4.04(3 \mathrm{H}$, s), $4.03(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20^{-}}$ $\mathrm{NO}_{4}\left(\mathrm{M}^{+}+1\right) 350.138$, found 350.139 .

6-Ethoxy-7,12-dioxo-8,11-dimethoxynaphtho[2,3-h]quinoline (74). To a stirred solution of $73(1.65 \mathrm{~g}, 4.876 \mathrm{mmol})$ in acetonitrile (150 mL) at $-10{ }^{\circ} \mathrm{C}$ was added dropwise a solution of ceric ammonium nitrate $(5.33 \mathrm{~g}, 9.734 \mathrm{mmol})$ in distilled water $(10 \mathrm{~mL})$ over 0.25 h . After 1.0 h , the mixture was filtered through a short plug of silica gel eluting with EtOAc to give 74 ($1.3 \mathrm{~g}, 74 \%$): mp softens at $248^{\circ} \mathrm{C}$ and decomposed at $281{ }^{\circ} \mathrm{C}$ (from hexanes/EtOAc, dark orange needles); IR (Nujol) 1685, $1594 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(1 \mathrm{H}$, dd, $J=1.4,3.6 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{dd}, J=1.5,8.5 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J$ $=3.8,8.6 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{s}), 7.15(2 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz})$, $3.94(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{5}\left(\mathrm{M}^{+}+1\right) 364.119$, found 364.118 .

Acknowledgment. The National Institutes of Health (Grant CA 50512) and National Science Foundation are thanked for their support of this research. Dr. Vince Lynch (University of Texas at Austin) is thanked for the X-ray crystal structure of 54. Bristol-Myers Squibb is thanked for the bioassays and financial support.

Supporting Information Available: Complete experimental details and spectral information for compounds $\mathbf{8 - 1 2}, \mathbf{1 2 b}, \mathbf{1 2 c}$, $\mathbf{1 2 d}, 12,23 \mathrm{e}, \mathbf{2 8}, 29,34-36,41,43-47,62$, and ethyl 3-(3-methylpyrid-2-yl)propenoate and X-ray spectral data for structure 54 (33 pages). See any current masthead page for ordering and Internet access instructions.

JA970435V

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1997.
 (1) Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; Van Duyne, G. D.; Clardy, J. J. Antibiot. 1989, 42, 1449. Konishi, M.; Ohkuma, H.; Matsumoto, K.; Saitoh, K.; Miyaki, T.; Oki, T.; Kawaguchi, H. J. Antibiot. 1991, 44, 1300.
 (2) Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3715.
 (3) The Wender and Langley groups have utilized computational docking protocols in an effort to determine the absolute stereochemistry. These findings predict that the absolute stereochemistry is $(2 S, 3 S, 4 S, 7 R, 8 R)$. Wender, P.; Kelly, R.; Beckham, S.; Miller, B. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8835. Langley, D. R.; Doyle, T. W.; Beveridge, D. L. J. Am. Chem. Soc. 1991, 113, 4395.
 (4) Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle, T. W., Eds.; Dekker, Inc.: New York, 1995.
 (5) Lee, M. D.; Durr, F. E.; Hinman, L. M.; Hamann, P. R.; Ellestad, G. A. In Advances in Medicinal Chemistry; Maryanoff, B. E., Maryanoff, C. A., Eds.; JAI Press: Greenwich, CT, 1993; Vol. 2. Lee, M. D.; Ellestad, G. A.; Borders, D. B. Acc. Chem. Res. 1991, 24, 235. Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497. Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
 (6) Ishida, N. K.; Miyazaki, K.; Kumagai, K.; Rikimaru, M. J. Antibiot. (Tokyo), Ser. A 1965, 18, 63. Ohnuma, T.; Nogeire, C.; Cuttner, J.; Holland, J. F. Cancer 1978, 42, 1670 . Goldberg, I. H. Acc. Chem. Res. 1991, 24 , 191. Edo, K.; Mizugaki, M.; Koide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetrahedron Lett. 1985, 26, 331. Edo, K.; Akiyama, Y.; Saito, K.; Mizugaki, M.; Koide, Y.; Ishida, N. J. Antibiot. 1986, 39, 1615. Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110, 7212.

[^1]: (7) Leet, J. E.; Schroeder, D. R.; Langley, D. R.; Colson, K. L.; Huang, S.; Klohr, S. E.; Lee, M. S.; Golik, J.; Hofstead, S. J.; Doyle, T. W.; Matson, J. A. J. Am. Chem. Soc. 1993, 115, 8432.
 (8) Minami, Y.; Yoshida, K.; Azuma, R.; Saeki, M.; Otani, T. Tetrahedron Lett. 1993, 34, 2633. Yoshida, K.; Minami, Y.; Azuma, R.; Saeki, M.; Otani, T. Tetrahedron Lett. 1993, 34, 2637. Iida, K.; Ishii, T.; Hirama, M.; Otani, T.; Minami, Y.; Yoshida, K. Tetrahedron Lett. 1993, 34, 4079.
 (9) Hanada, M.; Ohkuma, H.; Yonemoto, T.; Tomita, K.; Ohbayashi, M.; Kamei, H.; Miyaki, T.; Konishi, M.; Kawaguchi, H.; Forenza, S. J. Antibiot. 1991, 44, 403.
 (10) Semmelhack, M. F.; Gallagher, J.; Cohen, D. Tetrahedron Lett. 1990, 31, 1521.
 (11) Sugiura, Y.; Shiraki, T.; Konishi, M.; Oki, T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 3831. Shiraki, T.; Sugiura, Y. Biochemistry 1990, 29, 9795. Sugiura, Y.; Arakawa, T.; Uesugi, M.; Shiraki, T.; Ohkuma, H.; Konishi, M. Biochemistry 1991, 30, 2989.
 (12) De Voss, J. J.; Hangeland, J. J.; Townsend, C. A. J. Am. Chem. Soc. 1990, 112, 4554.
 (13) Wender, P. A.; Zercher, C. K. J. Am. Chem. Soc. 1991, 113, 2311. Nicolaou, K. C.; Smith, A. L.; Wendeborn, S. V.; Hwang, C.-K. J. Am. Chem. Soc. 1991, 113, 3106.

[^2]: (14) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660. Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4082. Lockhart, T. P.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4091. For biradical activity, see: Chapman, O. L.; Chang, C. V. C.; Kole, J. J. Am. Chem. Soc. 1976, 98, 5703. Darby, N; Kim, C. U.; Salaun, J. A.; Shelton, K. W.; Takeda, S.; Masamune, S. J. Chem. Soc. 1971, 1516. Wong, H. N. C.; Sondheimer, F. Tetrahedron Lett. 1980, 21, 217.

[^3]: (15) Wood, J. L.; Porco, Jr. J. A.; Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 5898 . Porco, Jr. J. A.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 7410. Taunton, J.; Wood, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10378. Nicolaou, K. C.; Hwang, C.-K.; Smith, A. L.; Wendeborn, S. V. J. Am. Chem. Soc. 1990, 112, 7416. Nicolaou, K. C.; Maligres, P.; Suzuki, T.; Wendeborn, S. V.; Dai, W.-M.; Chadha, R. K. J. Am. Chem. Soc. 1992, 114, 8890. Nicolaou, K. C.; Hong, Y.-P.; Torisawa. Y.; Tsay, S.-C.; Dai, W.-M. J. Am. Chem. Soc. 1991, 113, 9878. Nicolaou, K. C.; Dai, W.-M.; Tsay, S.-C.; Estevez, V. A.; Wrasidlo, W. Science 1992, 256, 1172. Nicolaou, K. C.; Dai, W.-M. J. Am. Chem. Soc. 1992, 114, 8908. Dai, W.-M. J. Org. Chem. 1993, 58, 7581. Shair, M. D.; Yoon, T.; Danishefsky, S. J.J. Org. Chem. 1994, 59, 3755. Shair, M. D.; Yoon, T.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 2477. Nishikawa, T.; Isobe, M.; Goto, T. Synlett 1991, 393. Nishikawa, T.; Isobe, M. Tetrahedron 1994, 50, 5621. Maier, M. E.; Abel, U. Synlett 1994, 38. Wender, P. A.; Beckham, S.; Mohler, D. L. Tetrahedron Lett. 1995, 36, 209. Wender, P. A.; Zercher, C. K.; Beckham, S.; Haubold, E.-M. J. Org. Chem. 1993, 58, 5867. Wender, P. A.; Beckham, S.; O'Leary, J. O. Synthesis 1994, 1278. Nishikawa, T.; Ino, A.; Isobe, M.; Goto, T. Chem. Lett. 1991, 1271. Nishikawa, T.; Yoshikai, M.; Obi, K.; Isobe, M. Tetrahedron Lett. 1994, 35, 7997. Nishikawa, T.; Ino, A.; Isobe, M. Tetrahedron 1994, 50, 1449. Nishikawa, T.; Isobe, M.; Goto, T. Synlett 1991, 99. Sakamoto, Y.; Takahashi, T. Synlett 1995, 513. Takahashi, T.; Sakamoto, Y.; Yamada, H.; Usui, S.; Fukazawa, Y. Angew. Chem., Int. Ed. Engl. 1995, 34, 1345.
 (16) Myers, A. G.; Fraley, M. E.; Tom, N. J.; Cohen, S. B.; Madar, D. J. Chem. Biol. 1995, 2, 33. Myers, A. G.; Fraley, M. E.; Tom, N. J. J. Am. Chem. Soc. 1994, 116, 11556.

[^4]: (17) Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.; Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118, 9509. Shair, M. D.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 16. Shair, M. D.; Yoon, T. Y.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1721.
 (18) Magnus, P. Tetrahedron 1994, 50, 1397.
 (19) Preliminary communications: Magnus, P., Fortt, S. M. J. Chem. Soc., Chem. Commun. 1991, 544. Magnus, P.; Parry, D.; Illiadis, T.; Eisenbeis, S. A.; Fairhurst, R. A. J. Chem. Soc., Chem. Commun. 1994, 1543.

[^5]: (20) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313. Ratovelomanana, V.; Linstrumelle, G. Tetrahedron Lett. 1984, 25, 6001. Guillerm, D.; Linstrumelle, G. Tetrahedron Lett. 1985, 26, 3811. Coste, J.; Frerot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991, 32, 1967. Sonogashira, K.; Tohda, Y.; Hashigara, N. Tetrahedron Lett. 1975, 16, 4467.

[^6]: (21) Haas, W. L.; Krumkalns, E. V.; Gerzon, K. J. Am. Chem. Soc. 1966, 88, 1988.
 (22) Organic Syntheses; Baumgarten, H. E., Ed.; Wiley: New York, 1973; Collect. Vol. V, p 635.
 (23) Yamaguchi, R.; Nakazono, Y.; Kawanisi, M. Tetrahedron Lett. 1983, 24, 1801.
 (24) For examples of $\eta^{2}-\mathrm{Co}_{2}(\mathrm{CO})_{6}$-propargylic cation reactions and cyclizations, see: Nicholas, K. M.; Pettit, R. Tetrahedron Lett. 1971, 3475. Nicholas, K. M.; Nestle, M. O.; Seyferth, D. In Transition Metal Organometallics in Organic Synthesis; Alper, H., Ed.; Academic Press: New York, 1978; Vol. 2. Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. Nicholas, K. M.; Mulraney, M.; Bayer, M. J. Am. Chem. Soc. 1980, 102, 2508. Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128. Schreiber, S. L.; Klimas, M. Y.; Sammakia,T. J. Am. Chem. Soc. 1987, 109, 5749. Montana, A. M.; Nicholas, K. M.; Khan, M. A. J. Org. Chem. 1988, 22, 5193. The symmetrical ether is formulated as \mathbf{i}, and is a mixture of diastereomers.

[^7]: (27) Uhle, F. C.; Jacobs, W. A. J. Org. Chem. 1945, 10, 76. Morley, J. S.; Simpson, J. S. C. J. Chem. Soc. 1948, 2024. Fanta, P. E. Organic Syntheses; Wiley: New York, 1963; Collect. Vol. IV, p 844.
 (28) Miyashita, N.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772.
 (29) Lynch, V. M.; Iliadis, T.; Fairhurst, R.; Magnus, P.; Davis, B. E. Acta Crystallogr., Sect. C 1995, C51, 782.

[^8]: (30) Liotta, D.; Markiewicz, W.; Santiesteban, H. Tetrahedron Lett. 1977, 4365.
 (31) Magnus, P.; Carter, P.; Elliot, J.; Lewis, R.; Harling, J.; Pitterna, T.; Bauta, W. E.; Fortt, S. J. Am. Chem. Soc. 1992, 114, 2544. Magnus, P.; Lewis, R.; Bennett, F. J. Am. Chem. Soc. 1992, 114, 2560.

[^9]: (32) Stang, P. J.; Treptow, W. Synthesis 1980, 283.
 (33) Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1985, 26, 1109. (34) Magnus, P.; Fairhurst, R. A. J. Chem. Soc., Chem. Commun. 1994, 1541.
 (35) While the $t_{1 / 2}$ differ by a factor of 3.2 , this represents a very small change in ΔG^{\ddagger}.

[^10]: (36) Isaacs, N. S. Physical Organic Chemistry; Longman Scientific \& Technical: Birmingham, AL, 1987.
 (37) The double Baeyer-Villiger oxidation of diethyl ketals gives a mixture of orthocarbonates and carbonate. Bailey, W. F.; Shih, M.-J. J. Am. Chem. Soc. 1982, 104, 1769.

[^11]: (38) For calculations concerning the rate of diyl formation, see: Snyder, J. P.; Tipword, G. E. J. Am. Chem. Soc. 1990, 112, 4040 3. Snyder, J. P. J. Am. Chem. Soc. 1989, 111, 7630. Snyder, J. P. J. Am. Chem. Soc. 1990, 112, 5367. Magnus, P.; Fortt, S. M.; Pitterna, T.; Snyder, J. P. J. Am. Chem. Soc. 1990, 112, 4986. Semmelhack, M. F.; Gallagher, J.; Minami, T.; T. Date, T. J. Am. Chem. Soc. 1993, 115, 11618.
 (39) Dr. David Langley (Bristol-Myers Squibb) is thanked for his efforts to match the relative ΔG^{\ddagger} values by computational methods.
 (40) Magnus, P.; Eisenbeis, S. A. J. Am. Chem. Soc. 1993, 115, 12627.

[^12]: (41) Myers, A. G. Tetrahedron Lett. 1987, 28, 4493. Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1989, 111, 9130. Myers, A. G.; Proteau, P. J. J. Am. Chem. Soc. 1989, 111, 1146. Nicolaou, K. C.; Skokotas, G.; Furuya, S.; Suemune, H.; Nicolaou, C. Angew. Chem., Int. Ed. Engl. 1990, 1064.
 (42) Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, Tetrahedron Lett. 1992, 33, 515. Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. J. Am. Chem. Soc. 1989, 111, 4120. Fujiwara, K.; Kurisaki, A.; Hirama, M. Tetrahedron Lett. 1990, 31, 4329.

[^13]: (43) The core azabicyclo[7.3.1]enediyne compounds $\mathbf{2 5}$ showed in vivo potency and activity (efficacy, $T / C>125 \%$) in P388 leukemia assays using CDF1 mice ($2 \mathrm{mg} / \mathrm{kg}$ gave T / C values of 175% and 170%, respectively. Kedarcidin gave a T / C of 175% at $2.4 \mathrm{mg} / \mathrm{kg}$. In a distal solid tumor model, which measured delay in tumor growth of a subcutaneous M109 lung carcinoma, 26 was active $(T-C=7.5$ days) when administered intervenously every two days beginning on the day of tumor implant for a total of five doses of $1.2(\mathrm{mg} / \mathrm{kg}) /$ dose. Using the same model and schedule, $\mathbf{2 5}$ was found to be marginally active ($T-\mathrm{C}=3.0$ days) while esperamicin ($T-C=11.0$ days at $0.05(\mathrm{mg} / \mathrm{kg}) /$ dose) and neocarzinostatin $(T-C=$ 19.3 days at $0.6(\mathrm{mg} / \mathrm{kg}) /$ dose $)$ were more active. In vitro cytotoxicity, assessed in HCT116 human colon carcinoma cells, showed that 25 was 350 times more potent than 23 (IC_{50} values of 0.21 and $75 \mu \mathrm{M}$, respectively). Dr.'s William C. Rose, Nada Zein, and Wyle Solomon, Bristol-Myers Squibb, Pharmaceutical Research Institute, Oncology Drug Discovery, P.O. Box 4000, Princeton, NJ 08543.
 (44) Kelly, T. R. Tetrahedron 1984, 40, 4537.
 (45) (45) Showalter, H. D. H.; Johnson, J. L.; Hoftiezer, J. M. J. Heterocycl. Chem. 1986, 23, 1491. Showalter, H. D. H.; Johnson, J. L.; Hoftiezer, J. M.; Turner, W. R.; Werbel, L. M.; Leopold, W. R.; Shillis, J. L.; Jackson, R. C.; Elslager, E. F. J. Med. Chem. 1987, 30, 121.
 (46) Magnus, P.; Eisenbeis, S. A.; Magnus, N. J. Chem. Soc., Chem. Commun. 1994, 1545.
 (47) Chikashita, H.; J. A. Porco. J. A. Jr.; Stout, T. J.; Clardy, J.; Schreiber, S. L. J. Org. Chem. 1991, 56, 1692. Nicolaou, K. C.; Gross, J. L.; Kerr, M. A.; Lemus, R. H.; Ikeda, K.; Ohe, K. Angew. Chem., Int. Ed. Eng. 1994, 33, 781. Okita, T.; Isobe, M. Tetrahedron, 1994, 50, 11143. Okita, T.; Isobe, M. Tetrahedron 1995, 51, 3737. Okita, T.; Isobe, M. Synlett 1994, 589.
 (48) Ochiai, E. J. Org. Chem. 1953, 18, 534. Boekelheide, V.; Lynn, W. J. J. Am. Chem. Soc. 1954, 76, 1286. Ginsburg, S.; Wilson, I. J. Am. Chem. Soc. 1957, 79, 481. Mathes, W.; Sauermilch, W. Chem. Ber. 1957, 90, 758. Jones, G.; Mouat, D. J.; Tonkinson, D. J. J. Chem. Soc., Perkin Trans. 1 1985, 2719.
 (49) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769. McIntosh, M.; Weinreb, S. J. Org. Chem. 1993, 58, 4823.

[^14]: (53) Ho, T.-L.; Hall, T.-W.; Wong, C. M. Synthesis 1973, 206.
 (54) Magnus, P. The Use of $\eta^{2} \mathrm{Co}_{2}(\mathrm{CO})_{6}$-Acetylene Complexes for the Synthesis of Enediyne Antitumor Antibiotics; SmithKline Beecham Research Symposium, Organometallic Reagents in Organic Synthesis; Academic Press Ltd.: New York, 1994; Chapter 1, p 1. Magnus, P.; Carter, R.; Davies, M.; Elliott, J.; Pitterna, T. Tetrahedron 1996, 52, 6283.

